

 1

BIOE 198MI Biomedical Data Analysis. Spring Semester 2019.

Lab8: Introduction to data types and conversion

Modern programming languages include techniques for creating and converting between different

data types. There are basic definitions of data types used in all programming languages and some

specific to certain languages. This lab is an overview of a few of the data types used in MATLAB.

The earliest programming employed “machine languages” made of streams of 0’s and 1’s. Today we

enter and process data in data types that include numeric arrays (integer, floating point, and logical

arrays), character arrays (character and string arrays), cell arrays, and others, but each has a binary

form. That is, each data type is converted into binary digits (bits) consisting of zeros and ones that

digital computers need to process data. In this lab, we consider four variable types: Integers,

floating-point numbers, characters and logical or Boolean variable. For example, we can

convert between integers and their binary forms as illustrated in the following examples,

0 → 0000 0000 5 → 0000 0101 99 → 0110 0011 199 → 1100 0111

1 → 0000 0001 20 → 0001 0100 100 → 0110 0100 200 → 1100 1000

2 → 0000 0010 30 → 0001 1110 120 → 0111 1000 255 → 1111 1111

3 → 0000 0011 40 → 0010 1000 150 → 1001 0110 256 → 0000 0001 0000 0000

4 → 0000 0100 50 → 0011 0010 180 → 1011 0100 257 → 0000 0001 0000 0001

In MATLAB you can use dec2bin or bin2dec to convert back and forth between a decimal integer

and its binary equivalent:

dec2bin(120) = 01111000 and bin2dec('1111000') = 120

Note how you need to enter the argument for bin2dec as a string! Also notice, in the table of 20

examples above, the first 18 require only one byte. The last two examples require two bytes. One

byte is a string of 8 bits. It is unit of storage capable of representing 28 = 256 distinct values.

Unsigned Integers

To convert from binary to decimal, use the following method

(0101 0101)2 → 0x27 +1x26 +0x25 +1x24 +0x23 +1x22 +0x21 +1x20 = 64+16+4+1 = (85)10

 = 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 bit 1 byte

26 25 24 23 22 21 27 20

most significant bit → least significant bit

 2

Exercise: what are the decimal equivalents of binary numbers (1011 0110)2, (0110 1011)2 ?

To convert from decimal to binary number, we do the following:
To convert (25)10 → (?)2 use the following algorithm,

 remainder
 ↓

 → (a7 a6 a5 a4 a3 a2 a1 a0)2 = (1 1001)2

 dec2bin(25) = 11001

Here is how this algorithm works...

Exercise: transform (35)10 to a binary number.

We found that a byte can represent nonnegative integers from 0 – 255, which is a total of 256

values. We can convert an array of values to an unsigned 8-bit integer using: uint8.

For example, for

a = [3 -3 3.6 4/2 7/3 300];

b=uint8(a)

Exercise: Can you interpret the results of executing the code above? Explain each element of b.

uint16, uint32 and uint64 are extensions of uint8 to include, respectively, 2 bytes, 4 bytes,

and 8 bytes. What are the ranges of each?

for uint8 = 0 – (28-1) or 0 – 255. for uint16 = 0 – (216-1) or 0 – 65535.

for uint32 = 0 – (232-1) or 0 – 4.2950e+09. for uint64 = 0 – (264-1) or 0 – 1.8447e+19.

25

12

6

3

1

0

2

2

2

2

2

2

2

2

0

0

0

1

0

0

1

1

0

0

0

𝑎0

𝑎1

𝑎2
𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

25

12

6

3

1

0

2

2

2

2

2

2

2

2

0

0

0

1

0

0

1

1

0

0

0

𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7

25 = 2 ∗ ሺ26 ∗ 𝑎7 + 25 ∗ 𝑎6 + 24 ∗ 𝑎5 + 23 ∗ 𝑎4 + 22 ∗ 𝑎3 + 2 ∗ 𝑎2 + 𝑎1ሻ + 𝑎0
2 ∗ ሺ25 ∗ 𝑎7 + 24 ∗ 𝑎6 + 23 ∗ 𝑎5 + 22 ∗ 𝑎4 + 2 ∗ 𝑎3 + 𝑎2ሻ + 𝑎1

.

.

.

.

.

 3

Signed Integers

MATLAB uses int8, int16, int32 and int64 to store signed integers. The left-most bit of data

now becomes the sign bit, where 1 denotes a negative number and 0 denotes a positive number.

Because the left-most bit indicates the sign of the integer, the range of integers represented is -128

to 127, which remains 256 unique values. For example,

(0000 0000)2 = (0)10 (0000 0001)2 = (1)10 (1000 0001)2 = (-1)10 (1111 1111)2 = (-127)10

(0111 1111)2 = (127)10 (1000 0000)2 = (-128)10 = definition. Use bin2dec on the rightmost 7 bits.

Exercise: Explain each element of b and c for the following:

a = [3 -3 3.6 4/2 7/3 300];

b=int8(a)

c=int16(a)

Floating-point representation of real numbers (whole and decimal values)

MATLAB represents floating-point numbers in either double-precision or single-precision format.

The default data type for MATLAB is double precision floating point. Each data point requires 64-

bits (8 bytes) for storeage. A single precision floating-point number requires only 32-bits (4 bytes).

You can convert an array of data to single precision using b=single(a) or double precision using

c=double(a).

Exercise: A 4K (UltraHD) television screen has 3840 x 2160 pixels. While neither dimension is

4000, this is still quite a lot of information. (a) Calculate the amount of memory required to store one

frame if the pixel values are uint8 and double. (b) If the monitor displays images at 30 frames per

second what is the minimum data delivery rate needed to stream live TV?

If a number lies approximately between -3.4 x 1038 to 3.4 x 1038, we can use either single or

double to store it. If the number exceeds those limits, we must use double.

Value it represents is ሺ−1ሻ𝑏31 × 2ሺ𝑏30𝑏29…𝑏23ሻ2−127 × ሺ1 + ∑ 𝑏23−𝑖2
−𝑖23

𝑖=1 ሻ

Value it represents is ሺ−1ሻ𝑏63 × 2ሺ𝑏62𝑏61…𝑏52ሻ2−1023 × ሺ1 + ∑ 𝑏52−𝑖2
−𝑖52

𝑖=1 ሻ

 = 1 0 1 0 0 0 1 1 - 81

26 25 24 23 22 21 1 - N
0 - P

20

exponent (8 bits) sign fraction (23 bits) single

0 23 31 22 30

exponent (11 bits) sign fraction (52 bits) double

0 52 63 51 62

 4

ASCII (characters)

The American Standard Code for Information Interchange (ASCII) is a character-encoding standard

for electronic communication. Each keyboard character is assigned a numerical value between 0

and 255 (decimal) and so each character typed occupies a byte of memory.

Originally, the ASCII code contained 128 elements (7-bits), as based on the English alphabet. The

code was extended to 8-bits to include special characters. Below is the table for the first 128

elements. In the table below, we find a character has a decimal representation. Recall that a

decimal integer is also represented by a binary number.

Exercise: Use the ASCII values above or the MATLAB function char to decode the message stored

as uint8 values: [72 101 108 108 111 32 87 111 114 108 100 33]

 5

Boolean (logical) operators:

Logical operations like AND and OR generate only 1 or 0 outputs indicating true or false conditions.

There are three logical operators in MATLAB: the unary NOT (~), the binary AND (&&), and the

inclusive OR (||) operators. Let’s examine

X Y X && Y X || Y ~X

0 0 0 0 1

0 1 0 1 1

1 0 0 1 0

1 1 1 1 0

Note that for && and || the variables X and Y must be scalars. For X&&Y, MATLAB examines X first

and if it is 0 it returns a 0 (false) output without looking at Y. This can be fast.

Exercise: Predict the outcomes of the following.

a=true; %this sets scalar variable a to logical true which is logical 1
b=false; %this sets scalar variable b to logical false which is logical 0

a&&b % 0
(~a)&&b % 0
(~a)||b % 0
a||(~b) % 1
a==false % 0
a=='true' % 0 0 0 0 get it?

However, if a and b are vectors or matrices of the same size, use & and | in place of && and ||.

Exercise: Predict the outputs of a&b and a|b and (~a)&b where,

a=[1 2 3 'c';0 2.333 10^3 55]; b=[0 4 0 'd';',' '6' 2 0];

Relational operators compare two variables and return a logical 0 or 1, indicating true or false.

Symbols Descriptions

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

 6

x y x<y x<=y x>y x>=y x==y x~=y

4 5 1 1 0 0 0 1

Logical operators are often found in iterative comparative statements.

Exercise: Predict the output values for c and d.

Logical indexing is a technique for selecting elements from an array that satisfy specific criteria.

The elements are selected by forming an index array whose elements are either 0 or 1.

clear all;

x = [1 2 3 4 5 6 7 8 9 10];

y = [3 1 5 6 8 2 9 4 7 0];

a = x>3; % a = 0 0 0 1 1 1 1 1 1 1

b = x<8; % b = 1 1 1 1 1 1 1 0 0 0

c = x(x>3|x<8); % c = 1 2 3 4 5 6 7 8 9 10

d = x(x>3&x<8); % d = 4 5 6 7

e = y(x<=3); % e = 3 1 5

f = x(y~=3); % f = 2 3 4 5 6 7 8 9 10

clear all;

a = [1 2];

b = [1 2];

c = [0 0];

d = [0 0];

for i = 1:2

 if a(i)>=2 && b(i)<=2

 c(i) = a(i)*b(i);

 end

 if a(i)>=2 || b(i)<=2

 d(i) = a(i)*b(i);

 end
end

 7

Convert from one data type to another:

MATLAB contains a selection of functions for converting one data type into another.

Exercise: Find outputs for the following statements and interpret the results.

clear all

a = num2str(int8(128)) 127

b = int8(str2num('-129')) -128

whos

Name Size Bytes Class

Attributes

 a 1x3 6 char

 b 1x1 1 int8

c = int2str(3.499999999) 3

d = int2str(3.5) 4

e = double('1') + double('1') 98

f = double(1) + double(1) 2

A = 123.456;

g = num2str(A) 123.456

h = num2str(A,'%.2e') 1.23e+02

k = num2str(A,'%.2f') 123.46

x = 1; y = 1; z = 0;

o = x & y & z; 0

p = (x | y) & z;

q = x | y & z;

Integer

Floating
point

Boolean Character single

double

int

uint

 8

Summary:

Categories of data types Data types

int8

int16

int32

int64

uint8

uint16

uint32

uint64

Integer

single

double
Floating point

char Character/string

logical Boolean

Sparse Matrix:

Thus far, we have always used dense matrices. That is, we store every elements of the matrix.

However, when matrices become large, we can run out of memory to store it. Fortunately, it is not

always necessary to store every element. A sparse representation can be used when many

elements are zero.

%% sparse matrix
dense_matrix=[3 1 0 0 0;
 0 0 0 0 0;
 2 4 1 0 0;
 1 1 0 0 0;
 0 0 0 0 0;];
sparse_matrix = sparse(dense_matrix)

dense_matrix1 = full(sparse_matrix)

whos dense_matrix % 200 bytes
whos sparse_matrix % 160 bytes

%% create a sparse matrix
i=[1 1 3 3 3 4 4];
j=[1 2 1 2 3 1 2];
v=[3 1 2 4 1 1 1];
sparse_matrix2=sparse(i,j,v,5,5);

V=full(sparse_matrix2)

The description of the MATLAB function sparse explains the structure as follows:

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate an

 m-by-n sparse matrix such that S(i(k),j(k)) = s(k), with space

 allocated for nzmax nonzeros.

 9

Image Data:

2-D images are arrays of picture elements (pixels). Image pixels can be displayed in binary,

grayscale, or color.

All pixels in a binary image are either 0 (black) or 1 (white). Binary images may also be labeled

black-and-white monochrome or bitmap images since, in principle, each pixel only requires 1 bit of

memory. In practice, a logical data pixel occupies one byte of memory.

Pixels in a grayscale image describe signal intensity information, e.g., the amount of light captured

by a detector as a function of position. Typically, each pixel displays one of 256 shades of gray. In

that case, pixels can be uint8 requiring 1 byte of memory each.

Example of grayscale and binary images generated in MATLAB.

close all; clear all

x=1:100;y=zeros(100,100); %first row in 100x100 image

for j=1:100 %generate the other 99 rows

 y(j,:)=j*x;

end

q=log(y);z=q>7; %take log and convert double to logical

yy=uint8(q); %yy converts double to uint8

subplot(2,2,1);imagesc(y);colormap(gray);axis square

title('Linear Double')

subplot(2,2,2);imagesc(q);axis square

title('Log Double')

subplot(2,2,3);imagesc(yy);axis square

title('Log uint8 (10 levels)')

subplot(2,2,4);imagesc(z);axis square

title('Log bitmap (2 levels)')

figure;subplot(2,1,1);plot(q(1,:))

title('Row 1'); ylabel('ln(y)')

subplot(2,1,2);plot(q(100,:))

title('Row 100');ylabel('ln(y)')

Notice: min(min(y)) = 1 and log(1) = 0. max(max(y))=10000 and log(10000)=9.21.

So uint8 conversion generates 10 gray levels. Also, we can assign a colormap with color, but that is a

false-color image.

Each pixels in a basic color image is composed of three primary colors, red, green, and blue (RGB).

A pixel is a 1x3 array of uint8 values requiring 3 bytes of memory per pixel. For example, a

bright pure red pixel has its red channel at maximum and its green and blue channels set at zero,

(255,0,0). Similarly, a pure green pixel is stored as (0,255,0) and a pure blue channel as (0,0,255).

To convert RGB to grayscale, we can display equal part of each color via

𝐺𝑟𝑎𝑦 = ሺ𝑅 + 𝐺 + 𝐵ሻ/3

or weight colors differently,

𝐺𝑟𝑎𝑦 = 0.2989 ∗ 𝑅 + 0.5870 ∗ 𝐺 + 0.1140 ∗ 𝐵

 10

Assignment:

This assignment is designed to explore the appearance of color

and grayscale images presented with various bit depths. The

number of bits used to present each pixel determines the

contrast resolution of the image. An RGB color image where

each color channel is given as uint8 has 24-bits of information.

That is, 224 = 16,777,216 different colors are possible. This

image has a greater bit depth than if the each channel had

4-bits, giving 212=4,096 different colors. To reduce from 4 bits to

3 bits first convert each channel to double, divide the 4-bit

image data by 2, round the result, convert back to uint8, and

multiply by 2.

1. Download Lab8image.png from the website. Read and

display the image using

I=imread('Lab8image.png');

imshow(I)

2. Type whos and interpret the data you have. Create a grayscale image from the original data

using the formula above.

3. Separately histogram the 8-bit R, G, and B channels in one 3x1 subplot for the original 8-bit

channel data.

4. Convert the original color image data into a 4-bit image that you display at full scale.

5. Separately histogram the R, G, and B channels in one 3x1 subplot for the 4-bit channel data.

6. Convert the original color image data into a 1-bit image to be displayed at full scale. Do not use

the logical operator for this!

7. Separately histogram the R, G, and B channels in one 3x1 subplot for the 1-bit channel data.

8. Presents the results as one 2x2 subplot displayed the four images (labeled). Also present three

3x1 subplots with the three sets of histograms. Four plots in total should be included in the Results.

Rubric:

1. Introduction (1 point).

2. Methods (2 points).

3. Four result figures clearly labeled and explained (4 points)

4. Discussion describing how a reduction in color-image bit depth influences the appearance of the

image (3 points)

On the left, we represent a binary
image as a 1-byte logical data type,
having two values of 0 or 1. In the
middle, we represent a grayscale

image as a 1-byte uint8 type with

256 gray levels. On the right, we
represent a color image and an array

of three uint8 values occupying three

bytes of storage.

1 byte 1 byte

1 byte

1 byte

1 byte

