
1

BIOE 198MI Biomedical Data Analysis. Spring Semester 2019.

Lab 6: Least Squares Curve Fitting Methods

A. Modeling Data

You have a pair of night vision goggles for

seeing NIR fluorescent photons emerging

from the skin of patients whose lymphatic

vessels were injected with a fluorescent

dye (see Fig 1). These goggles are

necessary because the detector can see

light levels below the sensitivity of the

human eye. The manufacturer says the

output voltage signal is directly

proportional to the input light levels with

slope one. Great! However, there is

additive noise. Before noise suppression,

the output signal from the goggles y

relative to deterministic input x is modeled

simply as: 𝑦 = 𝑥 + 𝑛, where for each x

the noise sample n is a time-independent

sample drawn from a normal pdf, 𝒩(0,10).

(In reality, x is a Poisson random variable,

which we ignore in this example.) Assume

the units of all three terms is micro

candela per square meter (cd/m2).

Example 1. You obtain one of these devices and decide to experiment in the lab before seeing

patients. The experiment is to input a known quantity of light x into the device and measure its

response y. The experiment begins with input flux 𝑥(1) = 10 μcd/m2 and is indexed in steps of 10

cd/m2, i.e., 10, 20, … , 100 cd/m2 while output �̂�(𝑡) is recorded. The results are:

Experimental Data:

x = 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

�̂� = 15.377 38.339 7.412 48.622 53.188 46.923 65.661 83.426 125.784 127.694

Fig. 1. Images from the lab of Dr. Eva Sevick-Muraca, University of Texas

Health Science Center at Houston, TX. Publication:

Journal of Vascular Surgery: Venous and Lymphatic Disorders, Volume 4,

Issue 1, January 2016, Pages 9-17. Images show lymphatic emptying

following sequential pneumatic compression.

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwi9hvOfmongAhVIyYMKHW6QAjgQjRx6BAgBEAU&url=https://www.sciencedirect.com/science/article/pii/S2213333X15001067&psig=AOvVaw3HQTYc_nbxobMcEJbK9gX0&ust=1548514997481497

2

Plotting the x,y pairs of recorded measurements, you find the

red circles in Fig 2. Compared to the noise free model

provided by the manufacturer, 𝑦 = 𝑥 (solid black line), the

results are not very impressive because of the noise.

The device assumes a linear input-output relationship, so

these data can be fit to a linear regression line of the form

𝑧 = 𝑃1𝑥 − 𝑃2 using the method of least squares:

𝑀𝑆𝑆𝐷 = argmin
𝑃1,𝑃2

∑ 𝑑𝑖
2

𝑁

𝑖=1

(𝑥) = argmin
𝑃1,𝑃2

∑(�̂�𝑖 − 𝑃1𝑥𝑖 − 𝑃2)2

𝑁

𝑖=1

 .

This equation tells us to find parameters P1 and P2 that yield

the minimum sum squared differences (MSSD) between each

of the N = 10 measurements and a straight line. The

differences (see Fig 2 below) are defined as

𝑑𝑖 = �̂�𝑖 − 𝑧𝑖 = �̂�𝑖 − (𝑃1𝑥𝑖 − 𝑃2) , for 1 ≤ 𝑖 ≤ 𝑁.

For statistical optimization reasons, we use 𝑑𝑖
2 instead of |𝑑𝑖|.

Notice that in this example, the least-squares regression line

z is not the same as the model function y.

To apply the method of linear least squares, we assume

 y is linearly related to x or a transformation of x

 deviations from the regression line (residuals di) are

normally distributed random variables 𝒩(𝑑�̅�, 𝜎𝑖)

 all variances i
2 are equal.

My code for generating these results is (note the new plotting function at the end!)
close all
x=10:10:100;rng('default');y=x+10*randn(size(x)); %y=x+n where n~N(0,10)
P=polyfit(x,y,1); %Apply the method of least squares: P(1),P(2)
z=polyval(P,x); %Compute the regression line z=P1*x + P2
myplot1(x,x,':b');hold on;myplot1(x,y,'or'),myplot1(x,z,'-k')
xlabel('x (input)');ylabel('output');
legend('x','y','z','Location','SouthEast')
q1=goodnessOfFit(y,z,'MSE');

str1=['GOF between z and y is ' num2str(q1)]; disp(str1);

q2=goodnessOfFit(y,x,'MSE');

str2=['GOF between x and y is ' num2str(q2)]; disp(str2);

%The following correlation coefficient relates x to y.
A2=corrcoef(x,y);str2=['R^2 for x vs y is ' num2str(A2(1,2))]; disp(str2);
str4=['Regression line: y= ' num2str(P(1)) 'x + ' num2str(P(2))]; disp(str4);
%
%

function myplot1(x,y,z) %I adapted myplot to modify line/point types

%

plot(x,y,num2str(z),'linewidth',2)

ax = gca; % current axes

ax.FontSize = 20;

end

Fig. 2. (Above) Graphical representation of data in

Example 1. Least-squares regression line is z while

modeled output are labeled y and measured data �̂�.

(Below) The distances d between �̂� and z at each x are

displayed along with z equation, GOF and R2 values.

3

Note how I adapted myplot from Lab 1b, I called it myplot1, to add the ability to control line and point

properties.

The Pearson correlation coefficient R2 is found from either of the two off-diagonal terms obtained from the

correlation matrix generated between x and y by the Matlab function corrcoef(x,y);

𝑅2 =
𝑠𝑞𝑢𝑎𝑟𝑒 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑜𝑓 𝑡𝑤𝑜 𝑠𝑎𝑚𝑝𝑙𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠
 =

𝑠𝑥�̂�
2

𝑠𝑥
2𝑠�̂�

2 =
(∑ (𝑥𝑖 − �̅�)𝑁

𝑖=1 (�̂�𝑖 − �̅̂�))
2

 ∑ (𝑥𝑖 − �̅�)2𝑁
𝑖=1 ∑ (�̂�𝑖 − �̅̂�)2𝑁

𝑖=1

=
[∑ (𝑥𝑖�̂�𝑖 − 𝑥𝑖

1
𝑁

∑ �̂�𝑗
𝑁
𝑗=1 − �̂�𝑖

1
𝑁

∑ 𝑥𝑗 +
1

𝑁2 ∑ 𝑥𝑗
𝑁
𝑗=1 ∑ �̂�𝑗

𝑁
𝑗=1

𝑁
𝑗=1)𝑁

𝑖=1]
2

[∑ (𝑥𝑖
2 − 2𝑥𝑖

1
𝑁

∑ 𝑥𝑗
𝑁
𝑗=1 + (

1
𝑁

∑ 𝑥𝑗
𝑁
𝑗=1)

2

)𝑁
𝑖=1] [∑ (�̂�𝑖

2 − 2�̂�𝑖
1
𝑁

∑ �̂�𝑗
𝑁
𝑗=1 + (

1
𝑁

∑ �̂�𝑗
𝑁
𝑗=1)

2

)𝑁
𝑖=1]

=
[∑ 𝑥𝑖�̂�𝑖

𝑁
𝑖=1 − ∑ 𝑥𝑖

𝑁
𝑖=1

1
𝑁

∑ �̂�𝑗
𝑁
𝑗=1 − ∑ �̂�𝑖

𝑁
𝑖=1

1
𝑁

∑ 𝑥𝑗
𝑁
𝑗=1 +

1
𝑁2 ∑ (∑ 𝑥𝑗

𝑁
𝑗=1 ∑ �̂�𝑗

𝑁
𝑗=1)𝑁

𝑖=1]
2

[∑ 𝑥𝑖
2𝑁

𝑖=1 −
2
𝑁

(∑ 𝑥𝑖
𝑁
𝑖=1)(∑ 𝑥𝑗

𝑁
𝑗=1) + 𝑁 (

1
𝑁

∑ 𝑥𝑗
𝑁
𝑗=1)

2

] [∑ �̂�𝑖
2𝑁

𝑖=1 −
2
𝑁

(∑ �̂�𝑖
𝑁
𝑖=1)(∑ �̂�𝑗

𝑁
𝑗=1) + 𝑁 (

1
𝑁

∑ �̂�𝑗
𝑁
𝑗=1)

2

]

=
[∑ 𝑥𝑖�̂�𝑖

𝑁
𝑖=1 −

1
𝑁

∑ 𝑥𝑖
𝑁
𝑖=1 ∑ �̂�𝑖

𝑁
𝑖=1 −

1
𝑁

∑ �̂�𝑖
𝑁
𝑖=1 ∑ 𝑥𝑖

𝑁
𝑖=1 +

𝑁
𝑁2 ∑ 𝑥𝑖

𝑁
𝑖=1 ∑ �̂�𝑖

𝑁
𝑖=1]

2

[∑ 𝑥𝑖
2𝑁

𝑖=1 −
2
𝑁

(∑ 𝑥𝑖
𝑁
𝑖=1)(∑ 𝑥𝑖

𝑁
𝑖=1) + 𝑁 (

1
𝑁

∑ 𝑥𝑖
𝑁
𝑖=1)

2

] [∑ �̂�𝑖
2𝑁

𝑖=1 −
2
𝑁

(∑ �̂�𝑖
𝑁
𝑖=1)(∑ �̂�𝑖

𝑁
𝑖=1) + 𝑁 (

1
𝑁

∑ �̂�𝑖
𝑁
𝑖=1)

2

]

=
[𝑁 ∑ 𝑥𝑖�̂�𝑖 −𝑁

𝑖=1 (∑ 𝑥𝑖
𝑁
𝑖=1)(∑ �̂�𝑖

𝑁
𝑖=1)]2

[𝑁 ∑ 𝑥𝑖
2 − (∑ 𝑥𝑗

𝑁
𝑗=1)

2𝑁
𝑖=1] [𝑁 ∑ �̂�𝑖

2 − (∑ �̂�𝑗
𝑁
𝑗=1)

2𝑁
𝑖=1]

=
[

1
𝑁

∑ 𝑥𝑖�̂�𝑖 − �̅��̅̂�𝑁
𝑖=1]

2

[
1
𝑁

∑ 𝑥𝑖
2 − �̅�2𝑁

𝑖=1] [
1
𝑁

∑ �̂�𝑖
2 − �̅̂�2𝑁

𝑖=1]

Whew! To follow the math, note that �̅̂� =
1

𝑁
∑ �̂�

𝑖
𝑁
𝑖=1 =

1

𝑁
∑ �̂�

𝑗
𝑁
𝑗=1 . Also,

1

𝑁
∑ (∑ �̂�

𝑗
𝑁
𝑗=1)𝑁

𝑖=1 = ∑ �̅̂�𝑁
𝑖=1 = 𝑁�̅̂� and

similarly for x.

Pearson’s correlation coefficient R2 describes the

strength of the linear relationship between two functions

or arrays of data (Fig 3). It estimates the fraction of

sample variance 𝑠�̂�
2 explained by changes in x. While 0 ≤

𝑅2 ≤ 1, we also have −1 ≤ 𝑅 ≤ 1. For example, when

R ~ 1, (see S4 in Fig 3 and in Example 1 above where R

~ 0.96), we see that variations in x mostly explain

variations in �̂�; increasing one variable by one unit

increases the other by approximately one unit and we say

the two variables are strongly positively correlated.

However, when R = 0 (see S2 and S3 in Fig 3), there is

no relationship between the two variables.

The downside of correlation is that it tells us nothing

about which variable is dependent. We will come back to

R and R2 in a minute.

First, another test statistic of interest is the Goodness of

Fit measure, GOF. Using the Matlab function

goodnessOfFit, I separately tested how well x and z in

Fig 2 each represent �̂� by selecting mean-square error as

Fig. 3. 2-D scatter plots for two variables with

different means, variances, and correlation

coefficients. S1: R = -0.40, sy < sx. S2: R = 0, sy >

sx. S3: R = 0, sy = sx. S4: R = 0.98, sy = sx. The

code is given at the end of this lab write up.

4

the GOF metric: 𝑀𝑆𝐸 =
1

𝑁
∑ (�̂�𝑖 − 𝑧𝑖)

2𝑁
𝑖=1 . Since regression line z is the MSSD result, it make sense that z

will fit data �̂� even better than the true underlying model y. If you do not have the goodnessOfFit

function, you can always compute MSE using the equation above in a function you call.

Summary: Correlation R is useful for quantifying the existence of relationships between variables, but it

cannot establish causal relationships. That is, there is no way to tell if one variable is “causing” the

response observed by the other; i.e., is �̂�(𝑥) true or is 𝑥(�̂�) true? We prefer R2 over R when correlation is

used to explain variance in the data. However, we use R to describe scatter plots (Fig 3) because it tells

us if the correlation between variables is negative or positive (compare S1 and S4 in Fig 3). While R

describes correlation between x and �̂�, GOF describe how well �̂� is described by linear regression line z.

Exercise. Look at the line of code below. It generates random data in three columns. The first two

columns are “uncorrelated” random data, R ~ 0, while the last two are “perfectly correlated” random data,

R = 1. If the correlation coefficient between columns i and j is 𝑅𝑖𝑗, the resulting correlation matrix from

Matlab has elements given by (

𝑅11 𝑅12 𝑅13

𝑅21 𝑅22 𝑅23

𝑅31 𝑅32 𝑅33

) . What fraction of each random variable can be

explained by the others? Why is the matrix symmetric about the diagonal?

clear all;Y=zeros(1000,3);Y=randn(1000,2);Y(:,3)=3*Y(:,2);R=corrcoef(Y)

R =

 1.0000 0.0006 0.0006

 0.0006 1.0000 1.0000

 0.0006 1.0000 1.0000

Assignment 1:

(a) Obtain the file lab6.mat that contains three variables. t is a time axis while y1 and y2 are data

arrays such that 𝑦1(𝑡) and 𝑦2(𝑡). Plot y1 and y2 versus t.

(b) Use polyfit and polyval to generate a set of polynomial fits for data, y1 and y2. That is, compute

nine fitted functions for a zeroth-order polynomial through an eighth-order polynomial. Specifically, use a

for loop for m=0:8, where m is the polynomial order, to find nine pairs z1 and z2 from polyval after

running polyfit.

(c) Within the for loop, compute a goodness-of-fit measure MSE for each value of m by programming

 𝑀𝑆𝐸1 ≜
1

𝑁
∑ (𝑦

1,𝑛
− 𝑧1,𝑛)2𝑁

𝑛=1 and 𝑀𝑆𝐸2 ≜
1

𝑁
∑ (𝑦

2,𝑛
− 𝑧2,𝑛)2𝑁

𝑛=1 .

Do this by writing a function called meanse that you call from the for loop. Here’s is a start…

function [output] = meanse(input1,input2) % Use this for the goodness-of-fit metric

%

output = {something goes here} %compute the mean-squared error between input1 and input2

end

%

5

(d) Plot z-function outputs on top of the data and decide which order of polynomial fit m best represents

both sets of data. To do this, generate a section than uses the input function to request keyboard

command to input a value between 0 and 8 before plots are generated.

For example: x=input('Order of polynomial to be plotted: ');

Report three plots: (a) Plot both MSE1 and MSE2 versus model order for m=0:8. (b) y1 versus t and z1

versus t on the same plot for your selection of the best m. (b) On the third plot show y2 versus t and z2

versus t together for the same value of m as y1.

Extra Credit: The function being fit is y1 = 1-exp(-t/2) + n1 where n is normally-distributed

noise. Try one extra fitting procedure as follows: Fit yy1 = log(1-y1) to a linear function using

clear P;P=polyfit(t,yy1,1);zz1=real(polyval(P,t));

Also plot t versus 1-exp(zz1) on top of the y1 data. Repeat the whole process for y2. Explain what

you find.

Rubric:

1 point for describing the problem in the Introduction of the report.

1 point for programming the MSE function that is called in the for loop.

2 points for explaining in the Methods section how you solved this fitting problem.

1 point for coding keyboard entry of m values.

1 point for using a myplot1 type function.

2 points for overall appearance and clarity of the report including the plots in the Results section.

1 point for Discussion explaining your choice of m.

1 point for trying the extra credit and 2 more points for achieving and explaining the extra credit

part.

6

%%%%%%%%%%%% Code that generated Figure 3 scatter plots. Not an assignment! %%%%%%%%%

% The following script simulates four flow cytometry data sets that are

% each bivariate normal. Parameter vectors vary between data sets.

%

clear all; close all;

rho=-0.4;s1=[100 40];m1=[500 180];N1=50; %First data set

z=randn(N1); %N1^2 is the number of data points simulated

X1=s1(1)*z+m1(1); %X1 and Y1 convert from standard normal pdf

Y1=s1(2)*(rho*z+sqrt(1-rho^2)*randn(N1))+m1(2);

plot(X1,Y1,'k.');axis([0 1000 0 1000]);axis square; %plot on fixed axis

text(730,270,'S1');hold on %label the first group S1

xlabel('Side Scatter Intensity');ylabel('Forward Scatter Intensity')

%

rho=0;s2=[40 100];m2=[500 600];N2=20; %Second data set

z=randn(N2);

X2=s2(1)*z+m2(1);

Y2=s2(2)*(rho*z+sqrt(1-rho^2)*randn(N2))+m2(2);

plot(X2,Y2,'ro');text(620,880,'S2')

%

rho=0;s3=[30 30];m3=[200 700];N3=30; %Third data set

z=randn(N3);

X3=s3(1)*z+m3(1);

Y3=s3(2)*(rho*z+sqrt(1-rho^2)*randn(N3))+m3(2);

plot(X3,Y3,'bx')

text(180,850,'S3')

%

rho=0.98;s4=[40 40];m4=[800 600];N4=50; %Fourth data set

z=randn(N4);

X4=s4(1)*z+m4(1);

Y4=s4(2)*(rho*z+sqrt(1-rho^2)*randn(N4))+m4(2);

plot(X4,Y4,'bx');hold off

title('Bivariant Normal Flow Cytometry Data');

xlabel('Side Scatter Intensity');ylabel('Forward Scatter Intensity')

text(850,580,'S4');hold off

% save('FN1','X1','Y1','X2','Y2','X3','Y3') %use these for the assignment

%load('FN1.mat'); %then use whos command to see what is loaded

%

[rho1]=corr(X1,Y1);R1=trace(rho1)/N1; %Here we estimate Pearson’s

str = ['rho_1 = ' num2str(R1)];disp(str) %correlation and average for

[rho2]=corr(X2,Y2);R2=trace(rho2)/N2; %all points along diagonal

str = ['rho_2 = ' num2str(R2)];disp(str)

[rho3]=corr(X3,Y3);R3=trace(rho3)/N3;

str = ['rho_3 = ' num2str(R3)];disp(str)

[rho4]=corr(X4,Y4);R4=trace(rho4)/N4;

str = ['rho_4 = ' num2str(R4)];disp(str)

%

