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BIOE 198MI Biomedical Data Analysis.  Spring Semester 2019. 

Lab 5:  Introduction to Statistics  
 

A. Review: Ensemble and Sample Statistics   

The normal probability density function (pdf) from 

which random samples are drawn has two parameters: 

the ensemble mean  and ensemble standard 

deviation  or variance 2.  Generally, a normal pdf is    
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The two are related using x =  z + .  In Matlab, we 

illustrate the pdf using normpdf(x,m,s) or 

pdf('norm',x,m,s).  We don’t directly measure 

ensemble statistics, i.e., population parameters .  

Instead, we intuit them from the physics of a problem.  

However, we can estimate the mean and variance from 

measurement data via sample statistics �̅� and s2.   

 

Sample statistics: 

 Estimate : the sample mean from N 

measurement samples is �̅� =
1

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1  .  

 Estimate 2 : the sample variance from 

N samples is 𝑠2 =
1

𝑁−1
∑ (𝑥𝑛 − �̅�)

2𝑁
𝑛=1  , 

where N-1 reflects the loss of one 

degree of freedom when computing �̅� . 

 The sample standard deviation is the 

square root of the sample variance  

𝑠 = √𝑠2.   

 

Note that �̅�, 𝑠 are themselves random variables 

whereas  are constant model parameters.   

 

B. Accuracy/Bias and Precision/Variance 

The mean-squared error (MSE) asks how well measurement X estimates  from random process 

𝑝(𝑥; 𝜇, 𝜎) = 𝒩(𝜇, 𝜎).  We note that MSE ≥ 0, and that values near zero suggest X is an accurate and 

precise estimate of parameter .  Looking more closely,  
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1
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∑ 𝜇2𝑁
𝑛=1     (multiply to find three terms) 

          = [
1

𝑁
∑ 𝑥𝑛

2𝑁
𝑛=1 ] − [

2𝜇

𝑁
∑ 𝑥𝑛
𝑁
𝑛=1 ] + 𝜇2   

        = [
1

𝑁
∑ 𝑥𝑛

2𝑁
𝑛=1 ] − 2𝜇�̅� + 𝜇2 + �̅�2 − �̅�2           (add and subtract �̅�2)  

Figure 1.  Three normal pdfs all with mean  

but with different .  The probability that 

samples fall within the range of a and b is 

Pr(𝑎 < 𝑥 < 𝑏) =  ∫ 𝑑𝑥 𝑝(𝑥; 𝜇, 𝜎)
𝑏

𝑎
.  The pdf 

peak heights vary because the areas must all 

equal one; that is, Pr(−∞ < 𝑥 < ∞) =

 ∫ 𝑑𝑥 𝑝(𝑥; 𝜇, 𝜎)
∞

−∞
= 1. 

Figure 2.  Illustration of difference between accuracy 

and precision. 
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        =
1

𝑁
[(∑ 𝑥𝑛

2𝑁
𝑛=1 ) − 𝑁�̅�2] + �̅�2 − 2�̅�𝜇 + 𝜇2     (rearrange & complete square)  

        =
1

𝑁
∑ (𝑥𝑛 − �̅�)

2𝑁
𝑛=1 + (�̅� − 𝜇)2  

        = 𝑠2 + 𝑏2    

  

The MSE statistic is the sum of sample variance s2 (except for 1/N instead of 1/(N-1)) and squared 

bias b2.  If measurement bias is negligible, i.e.,(�̅� − 𝜇)2 ≅ 0, then 𝑀𝑆𝐸 =  𝑠2
𝑁→∞
→   𝜎2.   

 

Exercise B:  Generate in Matlab a 5000-point sequence of measurements using 𝒩(5,3).  You are 

unsure of the distribution from which the data are formed and model it using 𝒩(2,3).  Estimate MSE 

and s2 from the data and thereby show the bias equals 3.   

 

C.  Ensemble Mean of Sample Statistics 

Because sample statistics are random variables, we can ask about the ensemble mean of the 

sample mean �̅�, written as 𝐸(�̅�), and the ensemble variance the sample mean written as 𝑣𝑎𝑟(�̅�) or 

𝜎�̅�
2.  Without showing details,  

𝐸(�̅�) = 𝜇 ,          𝑣𝑎𝑟(�̅�) ≜ 𝜎�̅�
2 =

𝜎2

𝑁
 ,        𝑠𝑡𝑑(�̅�) ≜ √𝜎�̅�

2 =
𝜎

√𝑁
  . 

We say the sample mean is 

asymptotically unbiased; i.e., as 

𝑁 → ∞, �̅� → 𝜇.   However, the 

sample standard deviation is 

biased: 𝜎�̅� = 𝜎 √𝑁⁄ . (Fig 3) 

You showed this was true in the 

assignment for Lab 4.  Because the 

std of the mean is less than or equal 

to the std, we repeat experiments 

and average the results.  In 

summary, the average of many 

unbiased, statistically independent 

measurements is the best estimate 

of the population mean.   

 

D.  Example of Statistical Prediction: Body Temperature Measurements  

The mean body temperature in the healthy adult human population is 98.2 ± 1.5oF ().   

Question (a): What is the probability that the next healthy adult you meet has a body temperature 

between 97oF and 99oF? (Note, this �̅� range is for a group of one, N = 1.)    

A. (a) Convert the temperature range to standard normal form: (97-98.2)/1.5 = - 0.8 and (99-98.2)/1.5 = 

0.53.  Then integrate the standard normal pdf via CDFs to find the probability requested (See Fig 4a): 

Pr(97 ≤ �̅� ≤ 99)𝑁=1 = 𝐶𝐷𝐹(0.53) − 𝐶𝐷𝐹(−0.80) = 0.702 − 0.212 = 0.49  .  We find there is a 49% 

probability when N = 1.    In Matlab: Pr1=cdf('norm',0.53,0,1)-cdf('norm',-0.8,0,1).   

 

Fig. 3.  (left) pdf for �̅� for three numbers of samples averaged, N = 1, 5, 10.  

(right) For N = 1,  𝜎�̅� = 𝜎, but in general 𝜎�̅� = 𝜎 √𝑁⁄ .   
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Question (b): What is the 

probability of finding the 

average body temperature in 

the same range from an 

average of 10 patients?  

A. (b) Pr(97 ≤ �̅� ≤ 99)𝑁=10 =

𝐶𝐷𝐹 (
99−98.2

1.5 √10⁄
) − 𝐶𝐷𝐹 (

97−98.2

1.5 √10⁄
) 

𝐶𝐷𝐹(1.69) − 𝐶𝐷𝐹(−2.53) =

0.954 − 0.0057 = 0.95  

The probability is 95% for 

N=10. (See Fig 4b). 

In Matlab: 
Pr10=cdf('norm',1.687,0,1)-cdf('norm',-2.529,0,1)  

Conclusion: averaging more samples when computing sample means increases confidence in 

finding data within a specified range.  **We assumed   are known, which is not practical**   

 

E. Hypothesis Testing and Error Thresholds:  

Say we make two sets of N measurements with 

sample means �̅�1 = 4.0 and �̅�2 = 7.6.  Both could be 

drawn from population 𝒩(𝜇, 𝜎) where  and  are 

known to be  and , respectively.  Converting from 

the original �̅� measurement axis to the standard-

normal axis using  𝑧 =
�̅�−𝜇

𝜎/√𝑁
, we find the distribution 

of Fig 5.  Our null hypothesis is that data for both 

sample means were drawn from 𝒩(𝜇, 𝜎).  How do 

we decide whether to accept or reject the null 

hypothesis?  This is statistical decision making!   

First, we must select decision thresholds along the z 

axis based on the error we are willing to accept.  If it 

is physically possible for �̅� to be both greater and 

less than , then we will set two symmetric 

thresholds at z and z1-.  The net probability of error 

is the areas under the pdf outside the two thresholds.    

Imagine from Fig 5 that setting thresholds at z = -5.0 and z1- = 5.0 we will likely call virtually any 

measured sample mean as belonging to 𝒩(𝜇, 𝜎).  The false-positive error probability (type I errors 

made by rejecting the null hypothesis when it is true) is very small, i.e., 𝛼~0.  However, the false-

negative error probability (type II errors made by accepting the null hypothesis when it is false) is 

very large, ~ 1.   

Fig. 4.  Illustration of solutions to Example D.  (a) N = 1 and (b) N = 10.  You 

can view the change with N as a change in z-axis values for fixed pdf or the pdf 

changing for fixed z-axis positions.  I chose the former for the illustration.   

 

 

Fig 5. Type I error probabilities  and  at z-axis 

locations 𝑧𝛼 ,  𝑧1−𝛼 , and 𝑧𝛼/2 are found from areas 

under the standard normal pdf. Areas (red) at 𝑧 = 𝑧𝛼 

and 𝑧 = 𝑧1−𝛼 are each 5% errors, while the area 

(black) at 𝑧 = 𝑧𝛼/2 indicates a 2.5% error.  Type II 

errors  are not shown.  
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Conversely, setting z = -0.05 and z1- = 0.05 will likely result in  ~ 1 and  ~ 0.  Neither situation is 

desirable, so we may need to look closely at the cost of each error to decide how to set thresholds.  

What is certain is that errors are inevitable no matter how thresholds are set!     

In one situation, we might be willing to accept a two-tailed, 10% net error probability, i.e.,  on 

either side of the mean in Fig 5.  We then select symmetric decision thresholds, 𝑧𝛼,  and 𝑧1−𝛼 such 

that the probability of error is 2𝛼 = 0.10.  In another situation, we might decide to accept a restrictive 

one-tailed, 2.5% error probability, and thus we will search for either 𝑧𝛼/2 or 𝑧1−𝛼/2 depending on 

whether the values are greater or less than . Thresholds are found using the inverse CDF 

function in Matlab:   

za=icdf('norm',0.05,0,1) = -1.645   %This finds 𝑧𝛼 for  

zao2=icdf('norm',0.025,0,1) = -1.960 %This finds 𝑧𝛼/2 for  

z1ma=icdf('norm',0.95,0,1) = 1.645  %This finds 𝑧1−𝛼 for 1- 

Notice that 𝑧1−𝛼 = −𝑧𝛼.   For the two-tailed 10% error condition, we accept the null hypothesis 

when -1.645 ≤ z ≤ 1.645.  In terms of �̅�, the range is 3.355 ≤ �̅� ≤ 6.645, since �̅� = (𝜎𝑧/√𝑁) + 𝜇 and        

 = 5, = 1 and N = 1.    

Returning to the example at the beginning of this section, where N = 1 and �̅�1 = 4.0, we find 𝑧1 =
�̅�1−5

1
= −1.0.  This value falls into the range for accepting the null hypothesis -1.645 ≤ z1 ≤ 1.645, and 

so we cannot reject the null hypothesis.  That is, we decide that �̅�1 is part of the 𝒩(𝜇, 𝜎) distribution.   

In contrast, we find that for measurement �̅�2 = 7.6, where 𝑧2 =
�̅�2−5

1
= 2.6,  we must reject the null 

hypothesis with 90% confidence.  That is, we say �̅�2 is different from  𝒩(𝜇, 𝜎) at a 10% level of 

significance.    

 

Exercise E: Test the null hypothesis that �̅�2= 7.6 belongs to distribution 𝒩(5,1) for a one-tailed error 

probability of  = 0.01.   

 

F. Student’s t-statistics 

Assume the more realistic situation where the underlying population variance 2 is unknown.  Thus, 

we estimate variance using sample statistics, viz., s2.  In this situation, the standard normal variable z 

changes to a t-variable with N-1 degrees of freedom (dof), i.e., =
�̅�−𝜇

𝜎/√𝑁
  →   𝑡 =  

�̅�−𝜇

𝑠/√𝑁
 .  t-distributions 

are families of continuous pdfs that become relevant when estimating the mean of a normally 

distributed population with small sample size N and unknown  .  Substituting s for  in z changes 

the distribution of the test statistic to another symmetric form also with zero mean but with more area 

under the tails, as shown in Fig 6.  See tcdf, tinv and tpdf.   

We set thresholds for t-statistics similar to those for hypothesis testing with known 2.  In Fig 6, the t 

coordinate for a 5% right-tailed error, 1- = 0.95, 2 dof = N -1 is found in Matlab using  

t1ma2=tinv(0.95,2) = 2.920. 

Similarly, the 5% left-tailed error is  = 0.05, 2 dof  
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t1ma2=tinv(0.05,2) = -2.920 , 

where again 𝑡1−𝛼 = −𝑡𝛼 . 

Compared with the standard normal pdf, the t-distribution has more area in the distribution tails 

particularly when the #dof = N - 1 is small.  To see this, we fix  at 0.05 and vary #dof from 1:100 to 

compare the results with that of a standard normal pdf: 

q=[1 2 5 10 100]; 

for j=1:5 

 t(j)=tinv(0.05,q(j)) 

end 

 

The code above results in 

threshold values along the t 

axis shown in the table.  

Comparing these values to   

z 0.05 = -1.645 from the 

standard normal variable, we 

see they are nearly equal for N = 101.   

Table values reveal that if you wish to restrict 

one-tailed decision errors to 5% and you do 

not know the population parameters, you need 

to extend the decision threshold past 6 

standard deviations of the mean if you only 

have one degree of freedom (average N = 2 

measurements).  However, averaging just 

three measurements reduces the threshold 

more than a factor of two to about three 

standard deviations of the mean.  Averaging 

more than 100 measurements returns you to 

thresholds approximately given by the 

standard normal pdf where population 

parameters are known.   

 

 

Assignment 1:  

Most cancer deaths result from complications associated with metastatic disease.  Metastases 
result when circulating tumor cells (CTCs) from epithelial cancers, e.g., breast, prostate, lung, 
and colon, travel through the vasculature to implant in remote regions of the body and grow into 
tumors; see Fig. 7 (left). There is much interest in developing simple and low-cost techniques for 
detecting CTCs in patients so those at risk for metastatic disease can be aggressively treated 
early.   
 
To understand the measurement, first note that each milliliter of whole blood contains about a 
billion red blood cells (RBCs), a few million white blood cells (WBCs) of various types, and less 
than 10 CTCs if they are present. CTCs are very sparse and thus difficult to detect even when 
they are specifically labeled for detection. CTCs are found by labeling receptor sites on the cells 

d t 0.05,d 

1 -6.3138 

2 -2.9200 

5 -2.0150 

10 -1.8125 

100 -1.6602 

 

Fig 6.  The red, green, and dotted black curves are 

t-distributions for 1, 2, and 10 degrees of freedom 

(corresponding to averages of N = 2, 3, and 11 

measurements).  The threshold values set t,2 and 

t1-,2 are for  = 0.05 and 2 dof.  Just as 

pdf('norm',z,0,1) generated the standard 

normal pdf for axis z, we have tpdf(t,d) for 

the t-distribution, where t is a vector of horizontal 

coordinate values and d is degrees of freedom.  

Note that for large # dof the standard normal and 

t-distributions are approximately equal.   
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that serve as biomarkers, and then painstakingly examining a great many cells often by eye.  
The process can be sensitive and specific but it is time consuming and expensive, and therefore 
it not used as much as it could be.   

You have an idea that could make detection of CTCs faster and cheaper if it works. The idea is 

to implement high-throughput measurements of four biomarkers from each blood cell using flow 

cytometry.  We multiply four measurement values to form one normal random variable X that we 

subject to hypothesis testing:  

𝑋 = 𝑆 × 𝑛 × 𝐶𝐾 ×
1

𝐶𝐷45
  . 

S is cell size in m, where CTCs are generally larger than other blood elements.  n is a nuclear 

factor that is zero when no nucleus is detected, as in RBCs, and n = 1 when a nucleus is 

detected, as in WBCs and CTCs.  CK is the optical intensity of cytokeratin fluorescent marker; 

large CK values indicate a high probability of CTCs.  CD45 is a receptor-linked protein tyrosine 

phosphatase expressed on leucocytes.  The marker for CD45 is weak when CTCs are present 

and significant otherwise. To decide if X measured for each cell indicates a CTC, we use 

hypothesis testing and aggressive thresholds (small values of  ) to minimize type I errors.  We 

need to be sure before calling a patient positive for CTCs because the cost of type I errors is 

high.   

The distribution of X measured from blood samples from many healthy subjects is bimodal (Fig. 7 

right). If CTCs are present, they are found at large X values.  The large narrow peak near x = 0 is 

from RBCs and the smaller peak near x = 3 is from WBCs. Assume you have data from 7 volunteer 

blood samples to estimate sample mean and variance, �̅� and s2. Design detection thresholds to 

conduct hypothesis testing for the error probabilities  = 0.001, 0.01, 0.05.     

(a) Plot the appropriate t-pdf and standard normal pdf for this experiment.  Indicate in a table and on 

the pdf plot where the thresholds are located.  You should guess at an appropriate value for s.   

(b) What is the threshold for the standard normal pdf at  = 0.001.  What is the equivalent t-statistic 

error for this standard normal result?   

Fig 7.  (left) Illustration of tumor cells entering the blood stream.  (right) Population distributions of 

various cells in the blood stream of healthy patients.   CTCs present appear at large X values.   
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(c) Convert the t-pdf thresholds to now be thresholds along the X axis.   

(d) You run a set of annotated patient data with at least one patient having metastatic disease.  At 

= 0.001, you measure no positive cases.  What do you do?  What questions should be asked?  

Assignment 2:  

The birth weights of 10,000 full-term human fetuses were measured during one year in a cluster of 

Midwestern US cities.  The distribution was normally distributed with mean w = 3 kg but the variance 

was not well determined and so is considered unknown.   

Two smaller studies in Chicago hospitals (labeled A and B) involving fewer babies each gave 

sample mean birth weight of �̅� ± 𝑠 = 2650 g ± 550 g and N = 25 (study A) and 2725 g ± 691 g and   

N = 45 (study B).  Since the mean values are somewhat lower than the larger study, and the 

associated neighborhoods are high in economically disadvantaged families, there is concern.  It is 

known that low birth weight can be an indicator of unhealthy adolescents.  Should subpopulations A 

or B be considered at risk?   Argue for or against the significance of the lower sample means for 

studies A and B.  Explore  = 0.001, 0.01, and 0.1 but note the value for  most relevant for making 

decisions is one that is depends on many factors outside of the data given in this problem.  So all 

you can do at this time is report on null hypothesis test results for the three values of  above and 

then discuss them with study investigators.   

There is no need to generate plots for this problem.  It could help to organize results using a table.   

 

Rubric: 

 Introduction for both projects, where you explain you are using hypothesis testing on two 

different problems.  2 pts. 

 Methods:  Describe the approach to computing these thresholds (either z or t values) in both 

problems.  One point each for methods sections for Assignments 1 and 2. 

 Results:  Assignment 1 requires plots and Assignment 2 does not (although you can use plot 

or table to tell the story).  One point each for the results in the two assignments.   

 Discussion and Conclusion:  Please discuss your thinking about how you can (1) adjusts 

your threshold in the first assignment to obtain the best diagnostic performance.  (2) Give 

reasons why you decided if the subpopulations had lower birth weights.  3 pts.   

 One point for appearance of the report including visual displays of results, clarity and logic of 

the flow of ideas and a clear answer.   

 

 

  


