UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Bioengineering

Homework Problems for Chapter 5.

1. Show that the set of all vectors in \mathbb{R}^{3} of the form $a\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$, where a is a real number, is a vector space.
2. Let \mathbb{W} be a set of all 2×2 matrices having every element a positive number. Show that \mathbb{W} is not a vector space.
3. (a) Show that vector $(a, 3 a, 5 a)$ is a subspace of \mathbb{R}^{3}. (b) Sketch this subspace on a 3-D plot.
4. Which of the following 2×2 matrices form a subspace?
(a) The subset of all 2×2 matrices whose elements sum to six, e.g., $\left(\begin{array}{cc}2 & -1 \\ 0 & 5\end{array}\right)$.
(b) The subset of all 2×2 matrices having the form $\left(\begin{array}{ll}a & a^{2} \\ b & b^{2}\end{array}\right)$.
5. Determine whether vector $(4,5,5)$ is a linear combination of vectors $(1,2,3),(-1,1,4)$, $(3,3,2)$.
6. (a) Is $(-1,7)$ a linear combination of $(1,-1),(2,4)$?
(b) Is $(-1,15)$ a linear combination of $(-1,4),(2,-8)$?
7. Give three vectors that are linear combinations of the following pair, $\mathbf{u}=(1,2,3)$, $\mathbf{v}=(1,2,0)$.
8. Determine if the first matrix is a linear combination of the others.
(a) $\left(\begin{array}{cc}5 & 7 \\ 5 & -10\end{array}\right) ;\left(\begin{array}{cc}1 & 2 \\ 3 & -4\end{array}\right),\left(\begin{array}{ll}0 & 3 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right)$
(b) $\left(\begin{array}{cc}4 & 1 \\ 7 & 10\end{array}\right) ;\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}3 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}-1 & -1 \\ 2 & 3\end{array}\right)$
9. (a) Determine whether $f(x)=3 x^{2}+2 x+9$ is a linear combination of $g(x)=x^{2}+1$, $h(x)=x+3$.
(b) Determine whether $f(x)=x^{2}+4 x+5$ is a linear combination of $g(x)=x^{2}+x-1$, $h(x)=x^{2}+2 x+1$.
10. (Theory) Let $\mathbf{v}, \mathbf{v}_{1}, \mathbf{v}_{2}$ be vectors in vector space \mathbb{V}. Let \mathbf{v} be a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}. If c_{1} and c_{2} are nonzero scalars, show in general that \mathbf{v} is also a linear combination of of $c_{1} \mathbf{v}_{1}$ and $c_{2} \mathbf{v}_{2}$.
11. (Theory) Let \mathbf{v}_{1} and \mathbf{v}_{2} span the vector space \mathbb{V}. Let \mathbf{v}_{3} be any other vector in \mathbb{V}. Show that in general $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ also span \mathbb{V}. (Hint: Start with $\mathbf{v}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\mathbf{v}_{3}-\mathbf{v}_{3}$, where $\mathbf{v}_{3}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$.)
12. If the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ are linearly independent, show that $\left\{\mathbf{v}_{1}+\mathbf{v}_{2}, \mathbf{v}_{1}-\mathbf{v}_{2}\right\}$ are also linearly independent.
13. Which of the following sets of vectors are linearly dependent?
(a) $\{(2,-1,3),(-4,2,-6),(8,0,1)\}$
(b) $\{(5,2,-3),(3,0,4),(-3,0,-4)\}$
(c) $\{(1,1,1),(2,2,2),(0,1,5)\}$
14. Find t such that the following sets are linearly dependent.
(a) $\{(-1,2),(t,-4)\}$
(b) $\{(2,-t),(2 t+6,4 t)\}$
15. Are the following vectors linearly dependent? (Use relationships among elements to decide. No matrix analysis on this one.)

$$
\{(1,2,3),(1,1,1),(2,3,4)\}
$$

16 Determine whether the following sets of matrices are linearly dependent.
(a) $\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 3 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 4\end{array}\right)\right\}$
(b) $\left\{\left(\begin{array}{cc}1 & 2 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 5 & 3\end{array}\right)\right\}$
17. Show that the following set is a basis for \mathbb{R}^{2} by showing it spans the space and is linearly independent.
(a) $\{(1,2),(3,1)\}$
(b) Is this basis orthogonal?
18. Find a basis for the following systems of equations and state whether or not they are orthonormal. Also find the rank of the system matrix.
$y_{1}=x_{1}-x_{2}$
(a) $y_{2}=2 x_{2}+3 x_{3}$
$y_{3}=-x_{1}+5 x_{2}-x_{3}$
(b) $\begin{aligned} & y_{1}=x_{1} / \sqrt{2}+x_{2} / \sqrt{2} \\ & y_{2}=x_{1} / \sqrt{2}-x_{2} / \sqrt{2}\end{aligned}$
19. Determine the rank of the following four matrices.
(a) $\left(\begin{array}{ccc}1 & 2 & -1 \\ 2 & 4 & 2 \\ 1 & 2 & 3\end{array}\right)$,
(b) $\left(\begin{array}{lll}2 & 1 & 3 \\ 4 & 2 & 6 \\ 6 & 3 & 9\end{array}\right)$,
(c) $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)$,
(d) $\left(\begin{array}{lll}1 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 1\end{array}\right)$.
20. Find bases for the subspace of \mathbb{R}^{3} spanned by the following vectors
(a) $(1,3,2),(0,1,4),(1,4,9)$
(b) $(1,-1,3),(1,0,1),(-2,1-4)$
21. Find bases for both row and column spaces and show the dimensions for these spaces are equal.

$$
\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 3 \\
1 & 4 & 6
\end{array}\right)
$$

22. Let matrix \mathbf{A} be related to the augmented matrix that is labeled \mathbf{B}, where if $\mathbf{A x}=\mathbf{b}$ then $\mathbf{B}=[\mathbf{A} \mid \mathbf{b}]$. For the following, state if the systems have a single (unique) solution, many solutions, or no solutions.
(a) \mathbf{B} is $4 \times 5 ; \operatorname{rank}(\mathbf{B})=4, \operatorname{rank}(\mathbf{A})=4$.
(b) \mathbf{B} is $3 \times 4 ; \operatorname{rank}(\mathbf{B})=3, \operatorname{rank}(\mathbf{A})=2$.
(c) \mathbf{B} is $4 \times 4 ; \operatorname{rank}(\mathbf{B})=2, \operatorname{rank}(\mathbf{A})=2$.
23. Which of the following are orthonormal sets of vectors?
(a) $\left\{\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right),\left(\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right),\left(\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right)\right\}$
(b) $\left\{\left(\frac{4}{\sqrt{20}}, \frac{2}{\sqrt{20}}, 0\right),\left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{2}}, \frac{1}{\sqrt{6}}\right),\left(\frac{1}{\sqrt{32}},-\frac{2}{\sqrt{32}}, \frac{5}{\sqrt{32}}\right)\right\}$
