BIOE 298MI Math Methods for Device Evaluation and Pathway Modeling Spring 2016

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Department of Bioengineering

Homework Problems for Chapter 5.

1. Show that the set of all vectors in \mathbb{R}^3 of the form $a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$, where *a* is a real number, is

a vector space.

- 2. Let \mathbb{W} be a set of all 2×2 matrices having every element a positive number. Show that \mathbb{W} is <u>not</u> a vector space.
- 3. (a) Show that vector (a, 3a, 5a) is a subspace of \mathbb{R}^3 . (b) Sketch this subspace on a 3-D plot.
- 4. Which of the following 2×2 matrices form a subspace?

(a) The subset of all 2×2 matrices whose elements sum to six, e.g., $\begin{pmatrix} 2 & -1 \\ 0 & 5 \end{pmatrix}$.

(b) The subset of all 2×2 matrices having the form $\begin{pmatrix} a & a^2 \\ b & b^2 \end{pmatrix}$.

- 5. Determine whether vector (4, 5, 5) is a linear combination of vectors (1, 2, 3), (-1, 1, 4), (3, 3, 2).
- 6. (a) Is (-1,7) a linear combination of (1,-1), (2,4)?
 (b) Is (-1,15) a linear combination of (-1,4), (2,-8)?
- 7. Give three vectors that are linear combinations of the following pair, $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (1, 2, 0)$.
- 8. Determine if the first matrix is a linear combination of the others.

(a)
$$\begin{pmatrix} 5 & 7 \\ 5 & -10 \end{pmatrix}$$
; $\begin{pmatrix} 1 & 2 \\ 3 & -4 \end{pmatrix}$, $\begin{pmatrix} 0 & 3 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$
(b) $\begin{pmatrix} 4 & 1 \\ 7 & 10 \end{pmatrix}$; $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 3 & 1 \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} -1 & -1 \\ 2 & 3 \end{pmatrix}$

BIOE 298MI Math Methods for Device Evaluation and Pathway Modeling Spring 2016

- 9. (a) Determine whether $f(x) = 3x^2 + 2x + 9$ is a linear combination of $g(x) = x^2 + 1$, h(x) = x + 3.
 - (b) Determine whether $f(x) = x^2 + 4x + 5$ is a linear combination of $g(x) = x^2 + x 1$, $h(x) = x^2 + 2x + 1$.
- 10. (Theory) Let \mathbf{v} , \mathbf{v}_1 , \mathbf{v}_2 be vectors in vector space \mathbb{V} . Let \mathbf{v} be a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . If c_1 and c_2 are nonzero scalars, show in general that \mathbf{v} is also a linear combination of of $c_1\mathbf{v}_1$ and $c_2\mathbf{v}_2$.
- 11. (Theory) Let \mathbf{v}_1 and \mathbf{v}_2 span the vector space \mathbb{V} . Let \mathbf{v}_3 be any other vector in \mathbb{V} . Show that in general \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 also span \mathbb{V} . (Hint: Start with $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \mathbf{v}_3 \mathbf{v}_3$, where $\mathbf{v}_3 = b_1\mathbf{v}_1 + b_2\mathbf{v}_2$.)
- 12. If the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2\}$ are linearly independent, show that $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_1 \mathbf{v}_2\}$ are also linearly independent.
- 13. Which of the following sets of vectors are linearly dependent?
 - (a) $\{(2, -1, 3), (-4, 2, -6), (8, 0, 1)\}$
 - (b) $\{(5,2,-3), (3,0,4), (-3,0,-4)\}$
 - (c) $\{(1,1,1), (2,2,2), (0,1,5)\}$
- 14. Find t such that the following sets are linearly dependent.
 - (a) $\{(-1,2), (t,-4)\}$
 - (b) $\{(2, -t), (2t+6, 4t)\}$
- 15. Are the following vectors linearly dependent? (Use relationships among elements to decide. No matrix analysis on this one.)

$$\{(1,2,3),(1,1,1),(2,3,4)\}$$

16 Determine whether the following sets of matrices are linearly dependent.

(a)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 3 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 1 & 2 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 5 & 3 \end{pmatrix} \right\}$$

- 17. Show that the following set is a basis for \mathbb{R}^2 by showing it spans the space and is linearly independent.
 - (a) $\{(1,2),(3,1)\}$
 - (b) Is this basis orthogonal?

BIOE 298MI Math Methods for Device Evaluation and Pathway Modeling Spring 2016

18. Find a basis for the following systems of equations and state whether or not they are orthonormal. Also find the rank of the system matrix.

(a)
$$y_1 = x_1 - x_2$$

 $y_2 = 2x_2 + 3x_3$
 $y_3 = -x_1 + 5x_2 - x_3$
(b) $y_1 = x_1/\sqrt{2} + x_2/\sqrt{2}$
 $y_2 = x_1/\sqrt{2} - x_2/\sqrt{2}$

19. Determine the rank of the following four matrices.

(a)
$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, (b) $\begin{pmatrix} 2 & 1 & 3 \\ 4 & 2 & 6 \\ 6 & 3 & 9 \end{pmatrix}$, (c) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, (d) $\begin{pmatrix} 1 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 1 \end{pmatrix}$.

- 20. Find bases for the subspace of \mathbb{R}^3 spanned by the following vectors
 - (a) (1,3,2), (0,1,4), (1,4,9)
 - (b) (1, -1, 3), (1, 0, 1), (-2, 1 4)
- 21. Find bases for both row and column spaces and show the dimensions for these spaces are equal.

$$\begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 4 & 6 \end{pmatrix}$$

- 22. Let matrix \mathbf{A} be related to the augmented matrix that is labeled \mathbf{B} , where if $\mathbf{A}\mathbf{x} = \mathbf{b}$ then $\mathbf{B} = [\mathbf{A}|\mathbf{b}]$. For the following, state if the systems have a single (unique) solution, many solutions, or no solutions.
 - (a) **B** is 4×5 ; rank(**B**) = 4, rank(**A**) = 4.
 - (b) **B** is 3×4 ; rank(**B**) = 3, rank(**A**) = 2.
 - (c) \mathbf{B} is 4×4 ; rank $(\mathbf{B}) = 2$, rank $(\mathbf{A}) = 2$.
- 23. Which of the following are orthonormal sets of vectors?

(a)
$$\left\{ \left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right), \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right), \left(\frac{2}{3}, \frac{1}{3}, -\frac{2}{3}\right) \right\}$$

(b) $\left\{ \left(\frac{4}{\sqrt{20}}, \frac{2}{\sqrt{20}}, 0\right), \left(-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{2}}, \frac{1}{\sqrt{6}}\right), \left(\frac{1}{\sqrt{32}}, -\frac{2}{\sqrt{32}}, \frac{5}{\sqrt{32}}\right) \right\}$