UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
 Department of Bioengineering

Homework Problems for Chapter 1.

1. For the following, draw each pair of vectors on a Cartesian axis. Then find their magnitudes and directions.
a.

$$
\mathbf{u}=\binom{2}{3} \quad \mathbf{v}=\binom{3}{2}
$$

b.

$$
\mathbf{u}=\binom{3}{3} \quad \mathbf{v}=\binom{1}{-1} \quad \mathbf{w}=\binom{-2}{-2} \quad \mathbf{x}=\binom{-1}{1}
$$

Based on the plot of vectors in (b), which vectors are orthogonal?
2. Find unit vectors for the vectors of (1a).
3. For the vector pairs in (1a), find $\mathbf{u}+\mathbf{v}$ and $\mathbf{u}-\mathbf{v}$. Also draw these vectors and find their magnitude and direction.
4. Find the inner products between all possible pairs of the following vectors.
a.

$$
\mathbf{u}=\left(\begin{array}{l}
2 \\
3 \\
4 \\
5
\end{array}\right) \quad \mathbf{v}=\left(\begin{array}{c}
-5 \\
-3 \\
-1 \\
0
\end{array}\right) \quad \mathbf{w}=\left(\begin{array}{c}
4 \\
-1 \\
0
\end{array}\right) \quad \mathbf{x}=\left(\begin{array}{c}
8 \\
-8 \\
2 \\
-2
\end{array}\right) \quad \mathbf{y}=\left(\begin{array}{c}
-8 \\
-8 \\
-2 \\
-2
\end{array}\right)
$$

b.

$$
\mathbf{u}=\binom{8}{4} \quad \mathbf{v}=\left(\begin{array}{l}
0 \\
5 \\
1
\end{array}\right) \quad \mathbf{w}=\binom{6}{5} \quad \mathbf{x}=\binom{2}{9} \quad \mathbf{y}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right)
$$

5. Among the vectors in (4a), which are orthogonal? Among orthogonal vectors, how would you change them so they become orthonormal?

Figure 1: Figures related to Problem 6 (left) and Problem 7 (right).
6. Find the vector magnitudes and the angles between adjacent vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{x}, \mathbf{y}$ in the figure.
7. Find the projections of \mathbf{u} onto the x and y axes from vectors in Fig. 1 (right). Do the same for \mathbf{v}.
8. Compute

$$
\alpha\left(\begin{array}{l}
1 \\
3 \\
0 \\
1
\end{array}\right)+\beta\left(\begin{array}{c}
-5 \\
2 \\
-2 \\
4
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
-1 \\
3 \\
-3
\end{array}\right)
$$

For
a.

$$
\alpha=1, \beta=2, \lambda=1
$$

b.

$$
\alpha=-1, \beta=2, \lambda=-1
$$

9. Solve the following equation for x or explain why a solution does not exist.

$$
2\left(\begin{array}{c}
1 \\
-1 \\
3
\end{array}\right)+3\left(\begin{array}{l}
x \\
0 \\
4
\end{array}\right)=\left(\begin{array}{c}
8 \\
-2 \\
18
\end{array}\right)
$$

10. Solve for α or explain why a solution does not exist.

$$
\alpha\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right)+2\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
8 \\
10 \\
-8
\end{array}\right)
$$

11. (a) Find values of α, β, and λ for the following vector equation.

$$
\alpha\left(\begin{array}{l}
4 \\
1 \\
2
\end{array}\right)+\beta\left(\begin{array}{c}
-1 \\
-2 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
3 \\
4
\end{array}\right)=\left(\begin{array}{c}
5 \\
7 \\
21
\end{array}\right)
$$

(b) Solve for x_{1}, x_{2}, and x_{3}. Then please look ahead in the book to find a method using the augmented matrix and row operations that results in the same solution.

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=2 \\
2 x_{1}+3 x_{2}+x_{3}=3 \\
x_{1}-x_{2}-2 x_{3}=-6
\end{gathered}
$$

12. Consider the vectors

$$
\mathbf{u}=\binom{2}{1} \quad \mathbf{v}=\binom{3}{4} \quad \mathbf{w}=\binom{8}{9}
$$

Express \mathbf{w} as a linear combination of \mathbf{u} and \mathbf{w} (i.e., $\mathbf{w}=\alpha \mathbf{u}+\beta \mathbf{v}$)
13. For the basis vectors

$$
\mathbf{e}_{1}=\binom{1}{1} \quad \mathbf{e}_{2}=\binom{-1}{1}
$$

and the vectors

$$
\mathbf{u}=\binom{2}{3} \quad \mathbf{v}=\binom{-3}{2}
$$

a. Verify the basis vectors are orthogonal.
b. Verify that \mathbf{u} and \mathbf{v} are orthogonal.
c. Express \mathbf{u} and \mathbf{v} as linear combinations of the basis vectors (i.e., $\mathbf{u}=\alpha \mathbf{e}_{\mathbf{1}}+\beta \mathbf{e}_{\mathbf{2}}$ and $\mathbf{v}=\lambda \mathbf{e}_{\mathbf{1}}+\gamma \mathbf{e}_{\mathbf{2}}$)
d. Verify that the expanded versions of \mathbf{u} and \mathbf{v} are orthogonal by computing $\left(\alpha \mathbf{e}_{\mathbf{1}}+\right.$ $\left.\beta \mathbf{e}_{2}\right)^{T}\left(\lambda \mathbf{e}_{1}+\gamma \mathbf{e}_{\mathbf{2}}\right)$
14. Prove the Cauchy-Schwarz Inequality: $\left\|\mathbf{u}^{T} \mathbf{v}\right\| \leq\|\mathbf{u}\|\|\mathbf{v}\|$
15. Prove the Triangle Inequality: $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$

