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Doppler Ultrasound Systems Designed
for Tumor Blood Flow Imaging
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Abstract—There is a great need for adaptable instrumentation
for imaging the volume and dynamics of flowing blood in cancerous
lesions. Applications include basic biological research and clinical
diagnosis. Commercial instruments are not currently optimized for
such applications and system modification for research is difficult
if at all possible. This paper describes a laboratory instrument for
developing tumor imaging techniques. It compares common and
improved estimators through a detailed error analysis of simulated
and experimental echo data. Broadband power-Doppler imaging
with contrast media is found to be ideal for visualizing the volume
of moving blood. The two-dimensional autocorrelator in color-flow
imaging for time-resolved velocity estimation provides unbiased es-
timates and is reasonably efficient for broadband echoes. Ultra-
sonic blood flow imaging can be sensitive for tumor imaging if the
instrumentation and algorithms are optimized specifically for the
experimental conditions.

Index Terms—Autocorrelator, blood velocity estimation, color-
flow imaging, error estimation, flow phantom, power Doppler,
tumors.

I. INTRODUCTION

SPATIAL PATTERNS and dynamics of blood flow are pri-
mary factors determining the growth and development of

metastatic tumors. There is evidence suggesting that blood flow
features can predict the metastatic potential of breast lesions.
Consequently, flow and perfusion imaging could play essential
roles in the management and treatment of breast cancer. For
example, microvessel density within regions of intense neo-
vascularization (INV) in invasive breast carcinoma has been
found to be a significant prognostic indicator for overall and
relapse-free survival in patients with early-stage breast car-
cinoma [1], [2]. Other investigators, however, concluded that
vessel density was not predictive of metastasis-free survival
or overall survival [3], [4], while still others found signif-
icant correlations between INV vessel density and survival
in axillary lymph node metastases of patients but not in the
primary lesion [5]. These discrepancies may be resolved, in
part, through a clearer understanding of the limits of in vivo
imaging technologies applied specifically to this diagnostic
problem.
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Numerous investigators have found ultrasonic techniques,
particularly power Doppler imaging and associated parameters,
are able to describe microvessel density, indicate INV regions,
and differentiate benign and malignant masses [6]–[8]. The
hypothesis is that the spatial and temporal tumor flow patterns
reliably indicate malignant potential and therapeutic response.
Clinical reliability of this indicator depends on understanding
limitations of the instrumentation and parametric estimators.
Unlike the conditions for blood velocity estimation in large
vessels, where pulsed Doppler ultrasound is widely applied,
tumor blood flow patterns are spatially disorganzied and het-
erogeneous on the scale of the Doppler pulse volume. Vessels
produced during angiogenesis are small and tortuous such that
the net red blood cell (RBC) velocity vector, summed over the
pulse volume, is small even when perfusion is high. The low
Doppler frequency and characteristically weak scattering am-
plitude combine to yield a very low signal-to-noise ratio (SNR)
for velocity estimates in tumors. Low Doppler frequencies
exacerbate efforts to filter clutter from the surrounding tissues
that move at the same velocity as the RBCs.

To optimize system performance, it is essential to perform
an analysis of instrumentation errors that are experienced under
common tumor blood flow conditions. That is the purpose of
this paper. Only then can we understand measurement limita-
tions and improve the system design. We summarize essential
instrumentation design features of a Doppler instrument by de-
scribing our laboratory system built for imaging tumor blood
flow in small animals. We also describe an improved velocity
estimator based on the Kasai autocorrelator and evaluate mea-
surement errors under slow-flow conditions using a tissue-like
flow phantom.

II. SYSTEM DESIGN

The pulse-echo imaging system diagrammed in Fig. 1 was
assembled. Five mechanically scanned axes position single-
element or annular array transducers. Mechanical scanning
compromises frame rate to provide maximum flexibility for
data acquisition and echo processing. B-mode image acqui-
sitions for 20 20 mm regions are possible at 1 frame per
second with negligible positional jitter. Although color M-mode
and spectral Doppler acquisitions are straightforward, color
flow imaging is achievable only with gated acquisition. Acqui-
sition, processing, and display are coordinated in Labview.

A programmable motion controller (Galil, Inc., DMC2000)
determines the position of the ultrasound transducer along 3
cartesian axes of the micro-positioning unit (Parker-Daedal).
Optical quadrature encoders provide an absolute position ac-
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Fig. 1. Block diagram of the ultrasound scanner.

curacy of 100 nm. The remaining two degrees of freedom are
applied to manually tilt the transducer about the axis. Fixtures
precisely hold a variety of single element transducers and an
annular array. Transducers are driven by a software-controlled
tone-burst pulser/receiver (Matec, Inc., TB1000). A low-noise
pre-amplifier (Mitec, dB, dB) improves
echo SNR and a diplexer (Matec, DIP 3) protects the pre-ampli-
fier from the high-voltage transmit pulses, as shown in Fig. 1.
To use our eight-ring annular array, we add a home-built low-
noise multiplexer and seven additional diplexers as described
in [9]. The timing and switch pattern of the multiplexer are
set by a software-controlled high-speed digital I/O card (Na-
tional Instruments, DIO-32HS). RF echo signals are recorded at
8 bits and sampling rates up to 8 GS/s by a digital oscilloscope
(LeCroy, WavePro 940) with 16 MByte acquisition memory.

Communication with the digital motion controller, scan
action, control of the pulser/receiver and oscilloscope, syn-
chronization data acquisition and transfer, signal and image
processing as well as image display are carried out by a host
PC running LabView using IMAQ-Vision software tools.
IMAQ-Vision was originally designed to take advantage of
Intel’s MMX technology with no need for RISC processors.
MMX accelerates integer or fixed-point functions that are used
to process 8-bit data. Computational performance gains of
400% over standard processors are obtained for many common
functions [10].

A. Acquisition and Display Modes

Three data acquisition modes are implemented: M-mode
(motion) records data over time at a fixed spatial position,
S-mode (swept scan) records echo data as a function of time
while slowly translating the transducer perpendicular to the
beam axis [11] to acquire data from several spatial locations,
and gated R-mode (repetition) combines full temporal and
spatial acquisition for repetitive physiological signals. All three
acquisition modes can be applied to several display modes:
standard B-mode (echo amplitude brightness), strain imaging,
and velocity imaging, the latter includes color M-mode, color
flow (CF), and power Doppler (PD) [12], [13]. Display frame
rates in S- and R-mode are mostly determined by the scan
duration whereas in M-mode, only data transfer time and

computational load are important. The display mode and exper-
imental situation determine the acquisition mode. For example,
in S-mode only one ultrasound pulse transmission and echo
recording per line-of-sight (LOS) and a single scan of the region
of interest (ROI) are required to produce a standard B-mode
image. One pulse per LOS and two or more sequential scans
of the same ROI are required for strain imaging [14]. Two or
more pulses per LOS and one scan are required to generate CF
images. If the blood speed is “high,” M-mode or gated R-mode
acquisitions for mechanically scanned instruments are needed
to avoid spatial aliasing. If the blood speed is “low,” S-mode
acquisition may be selected to provide more spatial information
(high and low speeds are defined below). Combining B-mode
imaging and velocity estimation to form CF and PD images,
or combining strain and velocity estimates for strain-flow
imaging [15], we must also be able to vary the transmitted
pulse bandwidth. Precise velocity estimates are obtained with
narrowband transmission, whereas B-mode and strain imaging
demand broadband pulses. Pulse duration is varied by software
control for interleaved data acquisition. Under conditions of
poor echo SNR, the number of transmitted pulses per LOS,
(also referred to as “packet size” or “ensemble length”), can be
as high as 20. Thus noise is reduced at the expense of frame
rate due to longer data transfer and computational times.

In M-mode acquisition, the transducer is stationary over a
LOS selected from a scout B-mode image. The pulser/receiver
drives the transducer at a pulse repetition frequency (PRF)
determined by an internal, software-adjustable clock frequency.

In S-mode acquisition, the transducer is scanned continuously
and rectilinearly in the plane of Fig. 1 while firing pulses
and recording corresponding echo signals one round trip time
later. Since the speed of sound in soft tissues, 1540 m/s, is much
higher than the typical mechanical scan speed of 0.020 m/s, no
additional restrictions are placed on spatial resolution or frame
rate. A key feature of the Galil DMC2000 motion controller/op-
tical encoder combination is the ability to deliver TTL impulses
that precisely define the transducer position. Galil, Inc., guar-
antees output impulses within a maximum delay time of 100 ns
after specified positions have been reached. Hence, at a scan
speed of 20 mm/s, the positional error is less than 2 nm.

Constant transducer scan speed is preferred to ensure that
positioning accuracy and data acquisition are not influenced
by acceleration. Position and scan speed fluctuations are de-
termined by the parameters of a PID controller resident in the
DMC2000 that must be optimized for specific situations. After
optimization we calculated the velocity mean and standard de-
viation for a nominal scan speed of 4 mm/s over a 60 mm path
where the distance and speed were recorded every 5 ms. Using
an air-dampened optical table to minimize environmental vibra-
tions, we measured the average speed and standard deviation to
be mm s. This standard deviation is approxi-
mately constant up to a scan speed of 20 mm/s, suggesting the
system has a noise floor.

Unfortunately, at scan speeds mm s, most commercial
motion controllers are unable to generate the output triggering
necessary for CF imaging: a certain number of trigger
impulses with predefined at pre-set spatial locations is
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required.1 At higher scan speeds, impulse output becomes
unstable depending on the desired PRF and , the distance
traveled between successive firings. When using a standard
DMC2000 to generate the necessary CF pulsing strategy, the
PRF for acceptable is limited to about 500 Hz [16]. This
problem can be avoided by either increasing to give the MC
more time to react or firing single ultrasound pulses instead
of pulse packets. This might, however, result in inappropriate
spatial sampling due to spatial aliasing or a spatial separation
between pulse packets that equals their interspatial distance.

Additional disadvantages lessen enthusiasm for these solu-
tions. First, for a given packet size, the minimum detectable
blood velocity in S-mode is higher than that for M-mode. This
is because increasing reduces the correlation between adja-
cent echo signals and thus increases the flow velocity variance.
Second, the PRF is a function of both the scan speed and .
In order to maintain a constant PRF at higher scan speeds,
must be adjusted accordingly to higher values, which further
reduces coherence between echo signals from adjacent LOS.
Third, to maintain the constant temporal sampling interval (con-
stant PRF) required in subsequent signal processing, the scan
velocity must also be constant, which does not allow the system
to adapt to the imaging tasks.

To overcome these limitations, we developed a digital trigger
control based on a programmable logic device (Xilinx, CPLD
XC 9572, 40 MHz, 1600 gates) that produces TTL impulse
packets between 1 and 32 at Hz kHz after
the DMC2000 motion controller has generated a single TTL
output impulse at a particular spatial location. The trigger con-
trol (Fig. 1) uncouples the choices of scan speed and PRF. The
only remaining restriction on the PRF for a given scan speed is
that the entire echo pulse packet must be received before further
impulse packets are released at subsequent LOS.

R-mode gated acquisition is required when the mechanical
scan speed is too slow to image flow dynamics over a large ROI.
Electronic scanning using linear or phased array technology is
the best solution but currently only available in proprietary com-
mercial ultrasound systems. Pulsed blood flow is sufficiently
periodic to acquire data from individual repetitions at a preset
phase from different spatial locations. Overall system synchro-
nization is handled by the CPLD trigger control which provides
the necessary ECG-gating input. ECG-triggering can also be
activated for M-mode acquisition.

B. Resolution

Circular aperture transducers produce an axisymmetric
sample volume for velocity estimation that determines the
echo signal at any instant of time. The sample volume is
characterized by the range and cross-range resolutions given
by the pulse dimensions along the axis and in the plane,
respectively, in Fig. 2. For all display modes, it is critical to
minimize the sample volume (maximize resolution). However,
for strain and velocity estimation it is particularly important

1The related hardware must be armed and reset by the motion controller
software. Although this action can be programmed in a second thread, the
maximum scan speed for CF imaging using the DMC 2000 is limited to
approximately 5 mm/s, often requiring R-mode acquisition.

Fig. 2. Illustration of resolution concepts for color flow imaging.

to be able to match beam properties according to the imaging
task. Displacement gradients (strains) on the scale smaller than
the sample volume result in large velocity and strain estimation
errors because of the loss of signal coherence required for
correlation-based estimators [14].

1) Range Resolution: Range resolution for velocity estima-
tion is the minimum range separation of two scatterers traveling
at different velocities that can be estimated as distinct veloci-
ties. Of the many features that affect range velocity resolution,
the sample volume length is most important (Fig. 2). The sample
volume length (SVL) in a medium with sound speed is simply

(1)

When rectangular-shaped ultrasound pulses and rectangular
range gates are applied, the pulse duration and range gate
duration are straightforward. For more general pulse and
gating functions, the full-width-at-half-maximum (FWHM or

dB) concept and the effective duration concept [17], e.g.

(2)

can be applied to find and . In (2), is the (real)
pulse-echo impulse response, is the maximum absolute
value, and is the temporal sampling interval.

2) Cross-Range Resolution: Cross-range resolution de-
pends primarily on the sample volume width (SVW) as
illustrated in Fig. 2. In the scan plane ( plane), SVW is
determined by the pulse-echo beam width (BW), scan speed
and PRF

BW (3)

The transducer displacement increment is scan
speed/ . The out-of-plane ( axis) sample volume dimen-
sion is given by the beam width. At the focal length of a
focused piston radiator of diameter and at wavelength ,
the FWHM beam width is approximately BW ,
where the -number is .

3) Detectable Velocities: It is well known that the PRF for
pulsed Doppler is bounded by the maximum tissue depth
and sound speed such that . For measurements
free of temporal aliasing, the PRF must exceed

(4)
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with the transmitted carrier frequency , fractional echo
bandwidth , Doppler angle and maximum blood velocity

in the sample volume [12]. For example, a 10 MHz
transducer focused at in soft biological tissue

m s has a beam width of 0.31 mm. For mm
and a tumor diameter of 10 mm, the largest PRF possible is

m kHz. However, the highest PRF our pulser
can provide is just 4 kHz, which means given that
the maximum detectable velocity our system can measure is

mm s, on the order of aortic velocities. For a scan speed
of 20 mm/s and kHz, mm and from (3)
with , we find mm. This value is only
slightly larger than the beam width. Since BW,
there is very little echo decorrelation even at that this high scan
speed.

At the other end of the physiological spectrum, RBC velocities
in tumor capillaries are about 5 mm/s. This relatively low value
allows a decrease in PRF to reduce the I/O and computational
loads without introducing aliasing. The minimum acceptable
PRF can be found from (4) for a relatively narrow fractional
bandwidth to be just 72 Hz and the lowest PRF possible
with our pulser is 80 Hz. However, maintaining a scan speed of
20 mm/s means that increases such that BW, which
leads to prohibitively large echo decorrelation. We compromise
and choose a higher PRF, often 500 Hz, and we reduce the scan
speed to 5 mm/s for S-scan acquisition of slow flow. These
parameters yield high echo coherence since BW.

The minimum detectable velocity ultimately depends on the
noise and clutter spectra relative to the blood spectrum as well as
on measurement parameters. Clutter suppression is particularly
difficult in slow-flow situations because the Doppler spectrum
from weakly scattering RBCs overlaps that from strongly
scattering surrounding tissues. Novel approaches to clutter
filtering are currently receiving much attention [15], [18], [19].
Assuming clutter has been removed, the packet size is the ex-
perimental parameter that determines the minimum measurable
frequency, and therefore velocity, using Fourier-based Doppler
spectrum estimation. The frequency increment for sampled
echo signals is given by [21]. The sampling
interval for pulsed Doppler measurements is .
Therefore, the minimum measurable frequency is .
The lowest possible PRF using the TB1000 pulser is 80 Hz.
Assuming , the lowest detectable frequency is 10 Hz
which corresponds to a velocity of 0.77 mm/s ( m s,

MHz, ) where the aliasing velocity equals 3.1
mm/s. An increase to spans the velocity range from
0.385 to 3.1 mm/s but lengthens the SVW and reduces the CF
frame rate.

In M-mode, frame rate is not an issue. can be enlarged
and, for time-steady flow, is limited solely by the available
acquisition memory of our oscilloscope. Provided that 2000
RF echo signals can be recorded (each of the signals is 64

s long and sampled at 125 MS/s) at a PRF of 80 Hz, the
minimum frequency becomes 0.04 Hz which corresponds to
a velocity in the m s range (with an aliasing velocity of
still 3.1 mm/s). Noise prevents us from estimating such low
values in practice.

Consequently, if we can achieve sufficient echo SNR and
suppress clutter, our system can measure the full range of
blood velocities, from the aorta to capillaries. The maximum
velocity is approximately 300 mm/s and the minimum can be
less than 1 mm/s depending on the nature of the flow and
the frame rate required. Our highest frame rate is far below
commercial electronically-scanned systems, yet this instrument
provides significantly more flexibility for research at lower cost.
The minimum frequency/velocity limitation described above
is not fundamental. It is possible to estimate phase shifts much
smaller than from signals shorter than . Examples are
discussed in Section III below.

C. Noise Minimization and Optimized Filter Receiver

Blood flow estimation is ultimately limited by system noise.
Three steps are implemented to maximize the echo SNR. First,
a low-noise amplifier (LNA) with noise figure dB
and 30-dB gain is applied prior to the receiver amplifier of the
TB1000 to keep the overall noise figure (NF) small.2 According
to the well-known Friis formula [20], the contribution made
by a given stage of cascaded and matched system elements to
the overall system noise is the noise temperature of that stage
divided by the total gain leading up to that stage. To minimize
the overall system NF, the first stage (LNA) must have a low
noise temperature and high gain. Since the output signal power
is due only to the signal entering the input of each stage, while
the output noise power is due to both input noise and noise
internally generated, we wish to match impedances between all
system elements. To maximize signal power, we normally need
to use a receiver matched to the source. More precisely, the
receiver input impedance should be tuned for maximum output
SNR, a condition usually close to that of an input impedance
match. Whenever the impedance of our system elements is
not matched to the standard value of 50 , we use additional
matching devices.

Second, we apply analog passive RF bandbass filters of
fourth order that also act as anti-aliasing filters over a relatively
large bandwidth (e.g., from 10 to 20 MHz for a 15-MHz
transducer). Broadband signals necessary for high resolution
B-mode and strain imaging must also pass these filters without
large attenuation.

Third, after digitizing the RF echo signals and quadrature
down-mixing to baseband, we pass IQ signals through a digital
six-pole lowpass filter. Butterworth characteristic was chosen
because of its flat bandpass response. However, any kind
of phase-shift sensitive measurement essentially demands a
filter response with constant group delay. The best way of
approximately achieving this goal in the analog domain is a
filter with Bessel characteristic. In the digital domain, FIR
filters are most often chosen over IIR filters because an exactly
linear phase property can be implemented with FIR filters. In
general, linear phase filters produce a constant time shift that
can be counteracted by designing zero phase filters, which also
have the desired property of not distorting the input signal’s
phase spectrum.

2NF = 10 � log (F ) = 1:2 dB where F is the noise factor defined by
F = 1 + T =T . T is the noise temperature which has a value of 92.3 K for
our LNA, and T is the standard temperature, usually 290 K.
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Fig. 3. Acquisition in S-mode (left) and the M � rN -dimension matrix
representation of echo data (right). M-mode acquisition is similar except the
transducer does not move and r = 1.

Since our digital filter is run “off-line,” the entire data
sequence is available prior to filtering. This allows a noncausal,
zero-phase filtering approach that eliminates the nonlinear
phase distortion of our IIR LP filter with Butterworth charac-
teristic [21]. The corner frequency of this baseband filter is set
to half the RF echo signal bandwidth.

III. FLOW VELOCITY ESTIMATION

Like most commercial color-flow imaging systems, we use a
phase domain velocity estimation technique known as the Kasai
autocorrelator [22] because of its computational efficiency.
Other velocity estimators, e.g., time-domain cross-correlation,
two-dimensional (2-D) Fourier transform, maximum-likelihood
and maximum entropy estimators, may exhibit superior perfor-
mance to the autocorrelator but also have significantly greater
computational requirements. In this section, we focus on two
autocorrelation techniques for color-flow (CF), color-M-mode,
and power Doppler (PD) imaging. Echo signal samples are
organized in 2-D arrays for processing, where the terms “fast
time” (columns) and “slow time” (rows) define the direction
of the beam axis (RF sampling, index ) and pulse packet
dimension (PRF sampling, index ), respectively. The situation
is depicted in Fig. 3. Provided that scatterers move with velocity

, the mean Doppler frequency computed along the slow-time
direction is where is the axial
velocity component.

A. One-Dimensional (1-D) Autocorrelator

The Kasai autocorrelator measures by estimating the
average phase shifts with respect to the central frequency
of the transmitted pulses between consecutive echo signals
in slow time for given depth locations along the fast-time
axis. It is one-dimensional (1-D) in the sense that estimation
occurs along the slow-time axis. The autocorrelator is able to
provide estimates of the mean Doppler frequency in the time
domain because of a relationship between spectral moments
and autocorrelation derivatives [23]. is proportional to the
phase of the complex 2-D autocorrelation function
with lags in fast-time and in slow-time direction
[22]

(5)

Fig. 4. Illustration of signal and white noise spectra with power P and P ,
respectively.

where and denote the real and imaginary parts. Other pa-
rameters were defined earlier. The correlation lag in seconds is
calculated in slow-time from and in fast-time from ,
where and are, respectively, the slow- and fast-time
sampling intervals. is an estimate of the complex corre-
lation function computed from the in-phase and quadra-
ture-phase components of the baseband echo data

(6)

is the number of waveform pairs averaged to improve the
estimation of .

When the blood component of the Doppler spectrum is sym-
metric about its mean frequency, the autocorrelator yields un-
biased estimates. However, in practice, the bias for asymmetric
spectra is negligible for moderate spectral widths [24]. Unlike
spectral estimators, autocorrelators provide unbiased measure-
ments if the blood spectrum is symmetric but partially under-
sampled [25]. Let us examine the influence of noise for the
simple case illustrated in Fig. 4 for bandpass white Gaussian
noise (WGN) and a narrow-band Doppler signal. Estimating

from the first spectral moment

we find the estimate is biased low, viz.

SNR
SNR

In this case, SNR is the ratio of the sum of to the sum of
. The bias is significant if the SNR is low as it often is for

flow imaging below 20 MHz. Additional processing can limit
the bias. However, autocorrelator-based estimates are unbiased
by additive WGN because the autocorrelation function of the
noise at lag one is zero [26]. Clutter filters will affect estimation
errors regardless of the estimator.

Zrnic used perturbation analysis to derive the variance of the
estimated mean velocity of pulse pairs [24]. He found
that for a narrow spectral width and low SNR, the variance is
minimal for uniformly spaced sample pairs that share a common
sample. Since the echo SNR for blood is low at frequencies
below 20 MHz, the method implemented in (5) is optimal for our
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Fig. 5. Left: Spectral broadening as a function of increasing Doppler frequency for four different blood velocities and as a function of ultrasound pulse duration
� . The width of spectrum A (zero velocity) indicates that the broadening introduced by the finite window length is negligible. Right: Normalized Doppler spectrum
width as a function of Gaussian pulse duration � .

application. The velocity variance of correlated pulse pairs
embedded in WGN and for large is given by [27]

SNR SNR

(7)

where is the (complex) echo auto-
correlation coefficient at lag . The dependence of on various
parameters is obvious from (7) except perhaps for the depen-
dence on Doppler spectrum width via . Spectral width
is a function of system parameters, such as beam and pulse
widths, and parameters that describe the distribution of RBC
density and velocity within the sample volume. Since the en-
velope of the pulse-echo impulse response is often Gaussian,
a Gaussian Doppler power spectrum of width is modeled.
The Doppler bandwidth depends on many factors. However, if
the velocity is constant over time and the range gate is small
so that the transit time effect [28] is appropriately expressed by
the pulse duration, only pulse parameters and velocity magni-
tude determine spectral width. For Gaussian-shaped ultrasound
pulses of duration parameterized by , the width of the Doppler
power spectrum can be found from

(8)

Fig. 5 shows average Doppler power spectra from time-steady
velocity fields with different velocity magnitudes and directions
as well as different (computed from 64 simulated IQ signals
where .) Doppler spectra A through E show the in-
crease in spectral width with blood velocity for a 15 MHz pulse
of width s. Spectrum E originates from a scatterer
field that is moving uniformly with a speed equal to that of spec-
trum C but in the opposite direction and with a larger pulse band-
width, . The shorter pulse s increases the

Fig. 6. Comparison of measured (circles) and predicted [solid lines, (9)]
velocity variances (v = 15 mm=s, f = 15 MHz, T = 1=1200 s,
N = 128, SNR = 1, 0.8 dB, and �3 dB). Equation (9) is valid where it is
less than the upper bound.

spectral width by a factor of 6 compared to spectrum C, and re-
duces velocity measurement precision because is inversely
related to the width of the Doppler spectrum.

A reasonable approximation to (7) for Gaussian spectra is
[27]

SNR SNR

(9)

The standard deviations measured using simulated echo data
are compared to those predicted by (9) in Fig. 6. These results
are valid for large and moderate to high SNR. The variance
increases monotonically with decreasing SNR until it reaches
the upper bound, , equal to the variance for a uniform
random variable over the frequency range. Thus, oversampling
(excessive ) increases the estimation variance when the
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Fig. 7. Complex sinusoid in WGN: autocorrelator velocity standard deviation (solid lines) and CRLB for N = 128 (left) and N = 8 (right) as functions of SNR
(v = 15 mm=s, f = 15 MHz, and T = 1=1200 s).

SNR is low. However, at higher SNR an increase in PRF im-
proves the correlation between samples which results in better
estimates. Furthermore, the autocorrelator measures phase from
which velocity is computed. For any given error in phase, the
error in velocity is reduced for a smaller PRF. So the influence of
PRF and pulse duration (which determine the relative Doppler
spectrum width) is quite complex, although the optimum PRF
that minimizes the estimation variance given in (9) is described
in Appendix.

Comparing the autocorrelator variance with the approximate
Cramér–Rao lower bound (CRLB) for correlated samples at the
optimum PRF shows that the measured variance is twice the
lower bound at low SNR [see (13) and (17)]. At high SNR and
for , a ratio of about 10 can be found from
(14) and (16). More efficient estimators may exist in low noise
situations, e.g., the 2-D autocorrelator described below, but for
high noise the 1-D autocorrelator is reasonably efficient.

The literature often uses the CRLB result for pure sinusoids
in WGN ( in Fig. 6). Fig. 7 compares these results with
the autocorrelator variance derived from (18) and (19) in the
Appendix. For large and small SNR the autocorrelator vari-
ance is significantly higher than the CRLB (Fig. 7, left). This
difference diminishes with increasing SNR. When increasing
the bandwidth we find the opposite is true even
for moderate spectral widths. Please note that the CRLB is pro-
portional to whereas the result that bounds the autocorre-
lator variance decreases with (Fig. 7, right). Therefore, the
single frequency CRLB often quoted does not provide guidance
for designing CF experiments.

B. Two-Dimensional (2-D) Autocorrelator

The 1-D autocorrelator described in Section III-A is imple-
mented in the vast majority of commercial scanners. It can
easily be improved without sacrificing its real-time feature. For
example, broadband pulses required for high spatial resolution
couple with the frequency-dependent attenuation in tissues to
bias velocity estimates. The bias is large when the down-shift
in mean radio frequency (MRF) caused by tissue attenuation is
significant compared with the Doppler shift produced by slow
blood flow. Blood flow close to the skin surface appears very
different from that a few centimeters below the surface because
the 1-D autocorrelator assumes the mean radio-frequency
is constant. To minimize this significant source of velocity
bias, the estimator must be capable of tracking frequency

shifts caused by blood velocity independently from those of
attenuation.

The 2-D autocorrelator is designed to accomplish just that
with its ability to estimate both the mean Doppler frequency and
MRF within each range gate. The estimator is 2-D in the sense
that echo data are processed in both the slow-time and fast-time
dimensions (see Fig. 3). When analyzed in two dimensions, a
full evaluation of the classic Doppler equation is possible. Also,
the center frequency of the transducer needs not be known or
measured beforehand so that spectral changes over time, e.g.,
those with transducer temperature, do not influence estimator
performance.

The 2-D autocorrelator provides consistently higher velocity
precision than the 1-D autocorrelator under all conditions [31].
However, the superiority of the 2-D autocorrelator is diminished
when the velocity spread inside the range gate is large or the
echo SNR is low. Both weaken the correlation between Doppler
and RF frequency fluctuations that is necessary to improve pre-
cision. Loupas [31] found that the crosscorrelator and 2-D auto-
correlator velocity estimators offer similar performance at high
echo SNR conditions but the latter was noticeably more robust
at low SNR. In this study, we apply the 2-D autocorrelator to
baseband IQ echo signals. Our system processes analytic sig-
nals instead of IQ signals to take advantage of the greater esti-
mation performance in other imaging situations where the echo
SNR is large [32].

The axial component of the velocity vector can be es-
timated using the same 2-D autocorrelation function of (6) but
now taking advantage of the full 2-D information. We estimate

at lags and to find [31]

(10)

where is the demodulation frequency used for quadrature
downmixing.

To demonstrate the superior performance of (10) over
(5), we generated a linear frequency modulated wave-
form (chirp) with exponential decay of the form rect

, where the
pulse length is s, the frequency down-shift rate
is MHz s, and the linear attenuation coefficient,

, has the slope dB-cm MHz
cm MHz . This decaying chirp wave-
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Fig. 8. Denominator of (10) was used to track the MRF of a chirp waveform in additive WGN. On the left is the normalized frequency spectrum at depth z = 0
(t = 0) where f = 13:5 MHz. The spectral shape is dominated by the range gate. On the right are MRF plots of the estimated (mean �1 standard deviation)
without noise (SNR = 1) and with noise (20 dB � SNR � 0 dB).

Fig. 9. Denominator of (10) was used to track the MRF for our phantom echo measurements at 13.5 MHz. On the left is the pulse-echo frequency spectrum from
a plexiglas plate in water averaged over 500 pulses. On the right are measured center frequency downshift and standard deviation when transmitting pulses with
power spectrum shown on the left. The dashed line are values predicted by (11).

form greatly simplifies the effects on the echo spectrum of
frequency-dependent attenuation but with realistic tissue pa-
rameters. We estimated the MRF of the chirp with and without
additive WGN using a rectangular-shaped range with a gate
length of 200 samples (1.23 mm), where the waveform is sam-
pled at 125 MS/s, and plotted the results in Fig. 8. Range time
is converted to depth via ct where mm s, the
average value in soft biological tissues. With added noise, the
maximum SNR at zero depth (first range gate) is approximately
20 dB and the minimum SNR at 25-mm depth (last range
gate) is 0 dB. The estimates of mean frequency and standard
deviation are computed from superpositions of the chirp with
100 independent noise realizations. We found that bias and
variance increase at greater depth where the echo SNR is lower.
Reducing the range gate to 50 samples (not shown) increased
the estimation variance without affecting bias.

We conducted an experiment analogous to the simulation
above with a standard tissue-like graphite-gelatin phantom [33]
and our broadband system at 13.5 MHz. Twenty-four echo
data sets, each comprising waveforms, were recorded
at independent spatial locations. Estimates of MRF using the
denominator of (10) gave the mean standard deviation
computed for 200 sample range gates MS s that
are shown in Fig. 9, right. The downward trend in MRF from
frequency-dependent attenuation is clearly seen.

Narrow-band attenuation coefficients were estimated for the
phantom at eight frequencies between 2.5 MHz and 11 MHz.
Adopting a linear frequency dependence model, we measured

dB-cm MHz cm MHz .
At the same frequencies we found m s.

Modeling the pulse-echo impulse response as a Gaussian
modulated sinusoid that is attenuated with depth (see
Fig. 9, left), the magnitude of the frequency spectrum is

. Combining the expo-
nents and completing the square we find that MRF varies with
depth according to

MRF (11)

The measured fractional bandwidth, is 0.566,
and the unattenuated center frequency equals 13.5 MHz.
The equation above and the data both predict that the MRF
decreases 2.5 MHz for mm depth. Deviations from
linear frequency dependence due to the tissue material and
a non Gaussian-shaped pulse spectrum as well as a reduced
echo SNR with depth contribute to the nonlinear decrease in
measured MRF values seen in Fig. 9.

Ignoring the effects of attenuation, the 2-D autocorrelator is
able to provide much lower velocity variance. To compare preci-
sion, we applied the 1-D and 2-D autocorrelators to simulated IQ
echo data and found the results in Fig. 10. With a packet size of
N = 8, we simulated 1000 independent waveform packets where
the blood velocity was constant throughout the field and the at-
tenuation was negligible. Each waveform packet was divided
into 100 range gates so that error estimates were obtained from
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Fig. 10. Comparison of 1-D and 2-D autocorrelators. On the left, the velocity standard deviation � is plotted versus true object velocity for SNR =1. On the
right, the velocity standard deviation is plotted for SNR = 10 dB. The aliasing velocity is 30 mm/s and packet size N = 8.

7 measurements of velocity. The range gate length was se-
lected to match the dB duration of the Gaussian-shaped
pulses (0.512 s or 64 samples at MS s) with

MHz. The figure shows velocity errors for SNR and
10 dB. Clearly, the standard deviation of the 2-D autocorrelator
estimates is much lower than for the 1-D autocorrelator. Bias
errors (not shown) for both estimators are negligible. The esti-
mation precision advantage of the 2-D autocorrelator is greater
when fluctuations in the numerator and denominator of (10) are
correlated. A high SNR increases correlation between adjacent
echo signals in the packet and thus improves the velocity preci-
sion of the 2-D autocorrelator. As opposed to the 1-D autocor-
relator which is reasonably efficient only at low SNR, the 2-D
autocorrelator thus approaches the CRLB at low and high SNR.
We also investigated the influences of pulse length, SNR, range
gate length and packet size in great detail. Results can be found
in [32].

C. Power Doppler

Power Doppler (PD) ultrasonic imaging is valuable for visu-
alizing slow blood flow in solid tissues, such as breast tumors
[34]. In CF imaging discussed above, the mean Doppler fre-
quency in each range gate is displayed, whereas in PD imaging
the integrated power of the Doppler spectrum is displayed. The
power in the Doppler-shifted signal is determined by a coherent
summation of echoes from moving scatterers per pulse volume.
PD images are much less dependent on Doppler angle than CF
imaging, enabling visualization of slow speed and spatially dis-
organized blood flow even at Doppler angles close to 90 . PD
signals are unaffected by aliasing, yet are still limited by noise
and clutter. Unlike CF imaging, where the velocity signal is seen
to vary significantly throughout the cardiac cycle (time-resolu-
tion), the PD signal indicates only the volume of moving RBCs,
which is valuable diagnostic information for tumor evaluation.

The variance of power estimates at a fixed position in the
body has at least two sources: speckle and additive noise.
Ignoring additive noise for the moment and focusing only on
speckle noise, the standard deviation of echo power estimates
equals the mean value [35] since blood scattering is considered
a fully developed speckle condition. Thus, it is necessary to
average PD estimates over the packet ensemble size and/or
depth samples to reduce speckle noise. Averaging over the
packet ensemble rather than range positions maintains spatial

Fig. 11. Variance reduction factor N as a function of the number of
estimates in the range gate N and Gaussian pulse duration � . A time-steady
velocity field of 15 mm/s is probed at a PRF of 1200 Hz. A value of 1 indicates
the standard deviation of the estimated mean power equals the signal mean
power, and, therefore, no reduction in estimation variance is achieved.

resolution but reduces frame rate. If we were able to average
statistically uncorrelated power samples, the variance of

the mean power would be reduced by the factor when
compared to the variance of a single sample. However, power
samples in the ensemble are always correlated, particularly
for slow flow, so the variance reduction factor is given
by (for a stationary process and equally spaced samples) [36]

(12)

where is the (real) autocorrelation coefficient for
power samples. Broadband pulses and focused beams yield PD
estimates with short correlation lengths, which provide many
uncorrelated samples in the ensemble for efficient averaging.
Thus, speckle noise in broadband PD images is reduced without
compromising spatial resolution and with only a modest loss of
frame rate. Unlike CF images, broadband pulse transmission is
desired for low speckle-noise PD imaging.

For example, assume a Gaussian-shaped pulse envelope of
duration . Squaring and then autocorrelating the result we
find . From (8) that relates to , we write

. Applying this function
to (12), we compute and plot the results in Fig. 11 to view the
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Fig. 12. Histograms and Gaussian fits of scan speed (left) and measured velocity (right). Note the difference in scales. The mean and standard deviation of the
scan speed are 9.9987 mm/s and 0.0187 mm/s. The mean and standard deviation of the measured velocity are 10.051 mm/s and 0.6674 mm/s.

variance reduction factor as a function of and packet
size .

The data in Fig. 11 are valid assuming a uniform blood ve-
locity to be consistent with the assumption of stationarity used
to derive (12). Tortuous or turbulent flows are not examples of
stationary random processes, so (12) does not apply in com-
plex flow situations. However, ideal tumor flow conditions are
those that yield increased Doppler power not eliminated by the
wall filter and rapidly decorrelating echoes within the ensemble
packet. The high ensemble echo correlation necessary for CF
imaging is detrimental for PD imaging.

Since additive noise is uncorrelated between packet ensemble
waveforms, it is greatly reduced by averaging. However, in-
creasing the bandwidth of transmitted pulses decreases the
echo SNR and diminishes the beneficial effects of broadband
transmission. As long as speckle dominates over noise vari-
ance, broadband pulses are beneficial. The best design strategy
for PD tumor imaging includes highly focused, broadband,
low-noise systems, perhaps enhanced with a low concentration
of contrast media.

IV. EXPERIMENTAL RESULTS

Two experiments were performed to assess the overall ve-
locity estimation accuracy and precision of our system. The first
experiment examines performance for constant velocity flow
while the second examines performance for spatially varying
velocity requiring spatial resolution.

A. Measurement Accuracy for Constant Velocity

A solid graphite-gelatin phantom with a rectangular shape
was placed in a water-alcohol solution with matching sound
speed and scanned with the system illustrated in Fig. 1. The
transducer was tipped in the -scan plane by the angle

. Acquiring echo data while translating the transducer at a
constant speed of 10 mm/s parallel to the phantom top surface,
we generated known constant flow conditions at a Doppler angle
of . The polarity of the velocity depends on the scan di-
rection.

RF echo signals were recorded at 125 MS/s within the
depth-of-focus centered at a phantom depth of 20 mm using
a 15 MHz, f/3.54 spherically focused transducer. The scan
speed, which determines the Doppler shift and object velocity,
was obtained 210 times by using the motion controller and

Fig. 13. Experiment to measure parabolic flow profiles. In this case, refraction
at the tube wall does not influence the measurement.

optical quadrature encoder readings. A histogram is shown in
Fig. 12, left. The mean speed is highly accurate and precise

mm s and represents the reference for the
ultrasonic velocity measurements.

The 2-D autocorrelator was applied to eight-fold-decimated
IQ signals (64 LOS, ) in order to verify its estimation per-
formance. We computed 6720 velocity estimates from 0.6-mm
range gates (matched to the dB pulse duration) at 960 in-
dependent spatial locations while scanning the phantom. The
angle-corrected mean and standard deviation of the estimated
velocity are 10.051 and 0.667 mm/s (Fig. 12, right). The mea-
surement bias is just 0.5% of the mean scan speed which proves
that the 2-D autocorrelator provides accurate velocity estimates.
We calculated a generous upper bound for the standard devia-
tion of the measured mean velocity by assuming only 960 of the
6720 estimates were uncorrelated and found

mm s. The standard error is less than 0.2% of the mean
estimate. Thus, the 2-D autocorrelator is also fairly precise even
for relatively slow velocity.

B. Measurement Accuracy for Spatially Varying Velocity

Velocity bias and variance were also determined from esti-
mates acquired in a circular flow channel phantom (Fig. 13).
A known flow profile was generated in a straight tube with
constant cross-sectional diameter and laminar, fully developed,
steady Poiseuille flow of Newtonian character. To create such
flow, we determined the “entry length” from the mouth of the
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Fig. 14. Left: Color M-mode image for steady Poiseuille flow. The horizontal axis covers 512 ms of time and the velocity resolution in depth is 0.245 mm. The
bar in the lower left corner represents 200 ms and 3 mm, respectively. Right: Time-averaged velocity profile including standard deviations and a parabolic fit. Error
bars indicate �1 standard deviation of a single line profile.

tube after which the flow becomes fully developed. If a fluid
with density and viscosity enters the tube of diameter with
constant velocity (blunt flow entry), the centerline velocity
downstream in the tube reaches 99% of its Poiseuille flow value
after the entry length [37]

where is the Reynolds number. In our experiment,
giving an entry length of .

An M-mode experiment to measure 1-D flow velocity profiles
across the flow channel is diagrammed in Fig. 13. A latex rubber
flow tube with mm inner diameter was mounted at
an angle of from horizontal in a plexiglass tank filled
with distilled water at 22 . The tube was stretched slightly
for stability such that its outer diameter decreased from 5 mm
to 4.85 mm. A variable-rate infusion pump (SAGE, M362,
flow accuracy of setting) fed the tube a 1% by mass
water-cornstarch suspension (22 , m s) at a rate

ml/min. We estimated the inner diameter of the
tube by measuring the distance between zero-velocity regions
from the flow profile and a very short range gate length. That
gave an inner tube diameter of 3.3 mm. Steady Poiseuille flow
in a 3.3-mm-diameter tube at a rate given above has a peak
velocity of mm s. The transducer probed the tube
250 mm from the flow entrance, therefore a parabolic flow
profile was expected.

Accurate velocity measurements in a flow gradient
situation require an ultrasonic pulse volume with dimen-
sions much smaller than the tube diameter. We used a
spherically focused, 7.5 MHz, f/1.33 transducer with a
beam width BW mm, and a depth-of-focus

mm about the radius of curvature. The
transducer was tilted by from vertical so that the
Doppler angle was . The relative velocity error

due to the uncertainty in the
Doppler angle was found by error propagation to be .

RF echo signals were acquired at 125 MS/s over a time
period of 512 ms at kHz (aliasing velocity is approx.
96 mm/s). Velocities were estimated from 8-fold decimated
IQ signal packets using the 2-D autocorrelator.
Six-sample (decimated) range gates gave a corresponding RGL
in beam direction of 0.286 mm which corresponds to 0.245 mm

cross-sectional length after taking the geometry of the setup
into account. The color M-mode image and time-averaged flow
profile are shown in Fig. 14. Error bars on the right side of
the profile are smaller than on the left because the density
of the cornstarch scatterers caused them to settle more in the
bottom half of the tube. Varying error demonstrates that echo
SNR is an important factor determining velocity variance. The
excellent fit of the measured profile to the parabola and the
close agreement of the measured and predicted peak velocities
show velocity measurements in flow gradients are unbiased.

V. CONCLUSION

Our 10–15 MHz flow imaging system, designed for
color-flow (CF) and power-Doppler (PD) imaging, has suf-
ficient sensitivity, precision, and accuracy to visualize blood
flow in tumors under ideal conditions. Questions of practicality
are answered by relating the geometry of a specific flow field to
the spatial resolution and echo contrast of the system. The best
strategies for imaging tumor flow select the ultrasonic pulse
volume that maximizes the net RBC velocity vector. A larger
pulse volume (lower spatial resolution) detects more moving
blood volume and increases the echo SNR if the motion of
individual RBCs is coordinated. In the tortuous, randomly-ori-
ented vasculature common in tumors, the net velocity vector
is reduced for large pulse volumes. Consequently, the lowest
velocity errors are produced at a spatial resolution optimized
for specific imaging situations.

Tumor vessels are mostly capillaries roughly 4–10 m in
diameter and separated on average by 20–50 m. The latter
value is based on knowledge that oxygen diffuses in tissue only
120 m. It is not possible to spatially resolve this flow struc-
ture noninvasively at ultrasonic frequencies below 20 MHz. The
most promising Doppler-based approach to visualizing the pres-
ence of blood flow is broadband PD imaging. PD imaging is
most precise at high spatial resolution if clutter and noise can
be minimized.

CF imaging adds information about directionality and time
resolution during the cardiac cycle. However, flow hetero-
geneity and the low scattering of RBCs severely limit velocity
estimation. The ideal strategy for real-time CF imaging of
tumors is to apply the 2-D autocorrelator to echo signals
having a bandwidth adjusted to optimize the interpacket echo
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correlation. Under these conditions and for Gaussian-shaped
Doppler spectra, velocity estimation is efficient in that esti-
mation variance approaches the CRLB. A low concentration
of contrast media improves CF and PD imaging of tumors by
increasing the echo SNR.

APPENDIX

The value of that minimizes the autocorrelator’s es-
timation variance can be found from (9) for low SNR to be

which gives a corresponding minimum vari-
ance of [27]

(13)

At large SNR and narrow Gaussian spectra (9) can be approxi-
mated by

(14)

In order to compare the estimation performance of the
autocorrelator with the optimum estimator it is necessary to
know the minimum variance bound. CRLBs specify the lowest
variance of any unbiased estimate. If samples are correlated,
as in CF imaging, it is difficult to exactly solve the likelihood
equations and derive the CRLB (and the optimum max-
imum-likelihood estimator which asymptotically approaches
the CRLB [29]). Approximate CRLBs for correlated samples
with Gaussian-shaped spectra embedded in WGN are given in
[27] for small SNR

SNR
(15)

and large SNR

(16)

To make a comparison with (13) straightforward, (15) can be
rewritten using the optimum value of
which minimizes the autocorrelator variance

(17)

An exact solution of the likelihood equations is possible for a
finite number of discrete-time observations of a complex sinu-
soid embedded in WGN. From the Fisher information matrix,
the CRLB of the frequency is [30]

SNR
(18)

and serves as reference to compare with the variance obtained
from the autocorrelator when estimating a complex sinusoid in
WGN [24]

SNR SNR
(19)
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